The Sizes of Peptides Generated from Protein by Mammalian 26 and 20 S Proteasomes. IMPLICATIONS FOR UNDERSTANDING THE DEGRADATIVE MECHANISM AND ANTIGEN PRESENTATION (original) (raw)
1999, Journal of Biological Chemistry
Knowledge about the sizes of peptides generated by proteasomes during protein degradation is essential to fully understand their degradative mechanisms and the subsequent steps in protein turnover and generation of major histocompatibility complex class I antigenic peptides. We demonstrate here that 26 S and activated 20 S proteasomes from rabbit muscle degrade denatured, nonubiquitinated proteins in a highly processive fashion but generate different patterns of peptides (despite their containing identical proteolytic sites). With both enzymes, products range in length from 3 to 22 residues, and their abundance decreases with increasing length according to a log-normal distribution. Less than 15% of the products are the length of class I presented peptides (8 or 9 residues), and two-thirds are too short to function in antigen presentation. Surprisingly, these mammalian proteasomes, which contain two "chymotryptic," two "tryptic," and two "post-acidic" active sites, generate peptides with a similar size distribution as do archaeal 20 S proteasomes, which have 14 identical sites. Furthermore, inactivation of the "tryptic" sites altered the peptides produced without significantly affecting their size distribution. Therefore, this distribution is not determined by the number, specificity, or arrangement of the active sites (as proposed by the "molecular ruler" model); instead, we propose that proteolysis continues until products are small enough to diffuse out of the proteasomes.