Compactness of matrix operators on some sequence spaces derived by Fibonacci numbers (original) (raw)

Abstract

In this paper, we apply the Hausdorff measure of noncompactness to obtain the necessary and sufficient conditions for certain matrix operators on the Fibonacci difference sequence spaces ℓp(F) and ℓ∞(F) to be compact, where 1 ≤ p < ∞.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (39)

  1. E.E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl. 2013 (38) (2013), 15 pages.
  2. T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, 2001.
  3. E. Malkowsky, V. Rakočević, An introduction into the theory of sequence spaces and measure of noncompactness, Zbornik radova, Matematicki inst. SANU, Belgrade, 9(17) (2000) 143- 234.
  4. A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies 85, Elsevier Science Publishers, Amsterdam: New York: Oxford, 1984.
  5. H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981) 169-176.
  6. B. Altay, F. Başar, The matrix domain and the fine spectrum of the difference operator ∆ on the sequence space ℓp, (0 < p < 1), Commun. Math. Anal. 2(2) (2007) 1-11.
  7. F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55 (2003) 136-147.
  8. R. C ¸olak, M. Et, E. Malkowsky, Some Topics of Sequence Spaces, Fırat University Press, ISBN: 975-394-0386-6, pp.1-63, 2004.
  9. Z.U. Ahmad, M. Mursaleen, Köthe-Toeplitz duals of some new sequence spaces and their matrix maps, Pub. de l'Inst. Math. Beograd, 42 (56) (1987) 57-61.
  10. E. Malkowsky, Absolute and ordinary Köthe-Toeplitz duals of some sets of sequences and matrix transformations, Pub. de l'Inst. Math. Beograd, 46(60) (1989) 97-103.
  11. S. Simons, The sequence spaces ℓ(pv) and m(pv), Proc. London Math. Soc. 3 (15) (1965) 422-436.
  12. I.J. Maddox, Continuous and Köthe-Toeplitz duals of certain sequence spaces, Proc. Camb. Phil. Soc. 65 (1965) 431-435.
  13. B. Altay, F. Başar, M. Mursaleen, Some generalizations of the space bvp of p-bounded varia- tion sequences, Nonlinear Anal. TMA, 68 (2008) 273-28.
  14. B. Choudhary, S.K. Mishra, A note on Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations, Int. J. Math. Math. Sci. 18(4) (1995) 681-688.
  15. M.A. Sarıgöl, On difference sequence spaces, J. Karadeniz Tech. Univ. Fac. Arts Sci. Ser. Math.-Phys., 10 (1987) 63-71.
  16. M. Et, On some difference sequence spaces, Turkish J. Math.7 (1993) 18-24.
  17. M. Mursaleen, Generalized spaces of difference sequences, J. Math. Anal. Appl. 203(3) (1996), pp. 738-745.
  18. S.K. Mishra, Matrix maps involving certain sequence spaces, Indian J. Pure Appl. Math. 24(2) (1993) 125-132.
  19. A.K. Gaur, M. Mursaleen, Difference sequence spaces, Int. J. Math. Math. Sci. 21(4) (1998) 701-706.
  20. E. Malkowsky, M. Mursaleen, S. Suantai, The dual spaces of sets of difference sequences of order m and matrix transformations, Acta Math. Sinica (Engl. Ser.) 23(3)(2007) 521-532.
  21. M. Mursaleen, A.K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Modelling 52 (2010) 603-617.
  22. M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of generalized differ- ence matrix, Comput. Math. Appl. 60 (2010) 1299-1309.
  23. A. Sönmez, Some new sequence spaces derived by the domain of the triple band matrix, Comput. Math. Appl. 62(2) (2011) 641-650.
  24. V. Rakočević, Measures of noncompactness and some applications, Filomat, 12 (2) (1998) 87-120.
  25. M. Mursaleen, A.K. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal. TMA, 73 (8) (2010) 2541-2557.
  26. M. Mursaleen, A.K. Noman, The Hausdorff measure of noncompactness of matrix operators on some BK spaces, Operators and Matrices, 5(3) (2011) 473-486.
  27. E.E. Kara, M. Başarır, On some Euler B (m) difference sequence spaces and compact opera- tors, J. Math. Anal. Appl. 379 (2011) 499-511.
  28. M. Mursaleen, V. Karakaya, H. Polat, N. S ¸imşek, Measure of noncompactness of matrix operators on some difference sequence spaces of weighted means, Comput. Math. Appl. 62 (2011) 814-820.
  29. M. Başarır, E.E. Kara, On the B-difference sequence space derived by generalized weighted mean and compact operators, J. Math. anal. Appl. 391 (2012) 67-81.
  30. F. Başar, E. Malkowsky, The characterization of compact operators on spaces of strongly summable and bounded sequences, Appl. Math. Comput. 217 (2011) 5199-5207.
  31. M. Mursaleen, S.A. Mohiuddine, Applications of measures of noncompactness to the infinite system of differential equations in ℓp spaces, Nonlinear Anal. 75 (2012) 2111-2115.
  32. M. Mursaleen, A.K. Noman, On σ-conservative matrices and compact operators on the space Vσ, Appl. Math. Lett. 24 (2011) 1554-1560.
  33. B. de Malafosse, V. Rakočević, Applications of measure of noncompactness in operators on the spaces sα, s 0 α , s c α , ℓ p α , J. Math. Anal. Appl. 323(1) (2006), 131-145.
  34. M. Başarır, E.E. Kara, On compact operators on the Riesz B (m) -difference sequence spaces, Iran. J. Sci. Technol. 35(A4) (2011) 279-285.
  35. M. Mursaleen, A.K. Noman, Compactness of matrix operators on some new difference se- quence spaces, Linear Algebra Appl. 436(1) (2012) 41-52.
  36. M. Başarır, E.E. Kara, On some difference sequence spaces of weighted means and compact operators, Ann. Funct. Anal. 2 (2011) 114-129.
  37. M. Başarır, E.E. Kara, On compact operators on the Riesz B (m) -difference sequence spaces II, Iran. J. Sci. Technol. 36(A3) (2012) (Special Issue-Mathematics), 371-376.
  38. M. Mursaleen, A.K. Noman, Applications of Hausdorff measure of noncompactness in the spaces of generalized means, Math. Inequal. Appl. 16 (2013) 207-220.
  39. M. Stieglitz, H. Tietz, Matrix transformationen von folgenräumen eine ergebnisübersicht, Math. Z. 154 (1977) 1-16.