Resistance and Adaptation to Quinidine in Saccharomyces cerevisiae: Role of QDR1 (YIL120w), Encoding a Plasma Membrane Transporter of the Major Facilitator Superfamily Required for Multidrug Resistance (original) (raw)
Related papers
Antimicrobial Agents and Chemotherapy, 2004
This work reports the functional analysis of Saccharomyces cerevisiae open reading frame YIL121w, encoding a member of a family of drug:H+ antiporters with 12 predicted membrane-spanning segments (DHA12 family). Like its close homologue Qdr1p, Yil121wp was localized at the plasma membrane, and its increased expression also led to increased tolerance to the antiarrhythmia and antimalarial drug quinidine. The quinidine resistance phenotype was confirmed for different yeast strains and growth media, including a prototrophic strain, and YIL121w was named the QDR2 gene. Both QDR1 and QDR2 were also implicated in yeast resistance to the herbicide barban (4-chloro-2-butynyl [3-chlorophenyl] carbamate), and the genes are functionally interchangeable with respect to both resistance phenotypes. The average intracellular pH of a yeast population challenged with quinidine added to the acidic growth medium was significantly below the intracellular pH of the unstressed population, suggesting plas...
Biochemical and Biophysical Research Communications, 2005
Saccharomyces cerevisiae ORF YBR043c, predicted to code for a transporter of the major facilitator superfamily required for multiple drug resistance, encodes a plasma membrane protein that confers resistance to quinidine and barban, as observed before for its close homologues QDR1 and QDR2. This ORF was, thus, named the QDR3 gene. The increased expression of QDR3, or QDR2, also leads to increased resistance to the anticancer agents cisplatin and bleomycin. However, no evidence for increased QDR3 expression in yeast cells exposed to all these inhibitory compounds was found. Transport assays support the concept that Qdr3 is involved, even if opportunistically, in the active export of quinidine out of yeast cell. A correlation was established between the efficiency of quinidine active export mediated by Qdr3p, Qdr2p or Qdr1p, and the efficacy of the expression of the encoding genes in alleviating the deleterious action of quinidine, as well as of the other compounds (QDR2 > QDR3 >>> QDR1).
Eukaryotic Cell, 2007
TheQDR2gene ofSaccharomyces cerevisiaeencodes a putative plasma membrane drug:H+antiporter that confers resistance against quinidine, barban, bleomycin, and cisplatin. This work provides experimental evidence of defective K+(Rb+) uptake in the absence ofQDR2. The direct involvement of Qdr2p in K+uptake is reinforced by the fact that increased K+(Rb+) uptake due toQDR2expression is independent of the Trk1p/Trk2p system.QDR2expression confers a physiological advantage for the yeast cell during the onset of K+limited growth, due either to a limiting level of K+in the growth medium or to the presence of quinidine. This drug decreases the K+uptake rate and K+accumulation in the yeast cell, especially in the Δqdr2mutant. Qdr2p also helps to sustain the decrease of intracellular pH in quinidine-stressed cells in growth medium at pH 5.5 by indirectly promoting H+extrusion affected by the drug. The results are consistent with the hypothesis that Qdr2p may also couple K+movement with substrat...
Gene, 2001
The yeast transcription factor Pdr1p regulates the expression of a number of genes, several of which encode ATP-driven transport proteins involved in multiple drug resistance. Among 20 genes containing binding consensus sequences for the transcription factor Pdr1p in their promoter, we studied more particularly the regulation and function of PDR16 (involved in phospholipid synthesis), TPO1 (involved in vacuolar transport of polyamines), YAL061W (homologous to polyol dehydrogenases) and YLR346C (unknown function). We found that the regulation of these four genes depends on Pdr1p, since promoter activities studied by lacZ fusion analysis and mRNA levels studied by Northern blotting analysis changed upon deletion or hyperactivation by the pdr1-3 mutant of this transcription factor. The drug sensitivity of the strains deleted for these genes revealed that TPO1, a gene previously found to be involved in spermidine resistance and vacuolar polyamine transport, is a determinant of multidrug transporter since it also mediates growth resistance to cycloheximide and quinidine. This resistance pattern overlapped with that of YOR273C, a homolog of TPO1. These two homologous transporters are thus bona ®de members of the phylogenetic subfamily DHA1 (drug/proton antiport TC 2.A.1. 2) of the major facilitator superfamily. Both YOR273C and TPO1 as well as at least one other determinant involved in the yeast pleiotropic drug resistance network contribute to resistance to a quinoline-containing antimalarial drug.
Antimicrobial Agents and Chemotherapy, 2009
Quinine has been employed in the treatment of malaria for centuries and is still used against severe Plasmodium falciparum malaria. However, its interactions with the parasite remain poorly understood and subject to debate. In this study, we used the Saccharomyces cerevisiae eukaryotic model to better understand quinine's mode of action and the mechanisms underlying the cell response to the drug. We obtained a transcriptomic profile of the yeast's early response to quinine, evidencing a marked activation of genes involved in the low-glucose response (e.g., CAT8, ADR1, MAL33, MTH1, and SNF3). We used a low inhibitory quinine concentration with no detectable effect on plasma membrane function, consistent with the absence of a general nutrient starvation response and suggesting that quinine-induced glucose limitation is a specific response. We have further shown that transport of [14C]glucose is inhibited by quinine, with kinetic data indicating competitive inhibition. Also, te...
Transferable mechanisms of quinolone resistance
International Journal of Antimicrobial Agents, 2012
Quinolones were introduced into clinical practice in the late 1960s. Although quinolone resistance was described early, no transferable mechanism of quinolone resistance (TMQR) was confirmed until 1998. To date, five different TMQRs have been described in the literature, including target protection (Qnr), quinolone modification (AAC(6 )-Ib-cr), plasmid-encoded efflux systems (e.g. QepA or OqxAB, amongst others), effect on bacterial growth rates and natural transformation. Although TMQRs usually only result in a slight increase in the minimum inhibitory concentrations of quinolones, they possess an additive effect and may facilitate the acquisition of full quinolone resistance. The emergence of new related genes may continue in the next years.
Mechanism of action of and resistance to quinolones
Microbial Biotechnology, 2009
Fluoroquinolones are an important class of widespectrum antibacterial agents. The first quinolone described was nalidixic acid, which showed a narrow spectrum of activity. The evolution of quinolones to more potent molecules was based on changes at positions 1, 6, 7 and 8 of the chemical structure of nalidixic acid. Quinolones inhibit DNA gyrase and topoisomerase IV activities, two enzymes essential for bacteria viability. The acquisition of quinolone resistance is frequently related to (i) chromosomal mutations such as those in the genes encoding the A and B subunits of the protein targets (gyrA, gyrB, parC and parE), or mutations causing reduced drug accumulation, either by a decreased uptake or by an increased efflux, and (ii) quinolone resistance genes associated with plasmids have been also described, i.e. the qnr gene that encodes a pentapeptide, which blocks the action of quinolones on the DNA gyrase and topoisomerase IV; the aac(6Ј)-Ib-cr gene that encodes an acetylase that modifies the amino group of the piperazin ring of the fluoroquinolones and efflux pump encoded by the qepA gene that decreases intracellular drug levels. These plasmid-mediated mechanisms of resistance confer low levels of resistance but provide a favourable background in which selection of additional chromosomally encoded quinolone resistance mechanisms can occur.
Mechanisms Responsible for Cross-Resistance and Dichotomous Resistance among the Quinolones
Clinical Infectious Diseases, 2001
Resistance to the quinolones almost always arises from the accumulation of mutations in chromosomal genes responsible for the drug targets, permeability, or active efflux. This resistance can be depicted as a stepwise process in which each step, represented by separate mutations, diminishes susceptibility on average 4-to 8fold. The precise path followed in this stepwise process differs with the quinolone that selects resistance as well as the organism involved. At each step, the influence of each mutation on susceptibility to other quinolones not used in the selection process varies greatly, and a pattern of either cross-resistance or dichotomous resistance may be seen. From an understanding of the stepwise process by which resistance to the quinolones evolves, it is possible to use an 8-fold rule to predict which compounds may provide effective therapy for a given infection and be least likely to select for resistance.
Current Genetics, 1991
A multi-copy plasmid containing the SNQ3 gene confers hyper-resistance to 4-nitroquinoline-Noxide (4NQO), Trenimon, MNNG, cycloheximide, and to sulfometuron methyl in yeast transformants. Restriction analysis, subcloning, and DNA sequencing revealed an open reading frame of 1 950 bp on the SNQ3-containing insert DNA. Gene disruption and transplacement into chromosomal DNA yielded 4NQO-sensitive null mutants which were also more sensitive than the wild-type to Trenimon, cycloheximide, sulfometuron methyl, and MNNG. Hydropathic analysis showed that the SNQ3encoded protein is most likely not membrane-bound, while the codon bias index points to low expression of the gene.