miR-196B-5P and miR-200B-3P Are Differentially Expressed in Medulloblastomas of Adults and Children (original) (raw)
Related papers
MicroRNA profiling in human medulloblastoma
International Journal of Cancer, 2009
Medulloblastoma is an aggressive brain malignancy with high incidence in childhood. Current treatment approaches have limited efficacy and severe side effects. Therefore, new risk-adapted therapeutic strategies based on molecular classification are required. MicroRNA expression analysis has emerged as a powerful tool to identify candidate molecules playing an important role in a large number of malignancies. However, no data are yet available on human primary medulloblastomas. A high throughput microRNA expression profiles was performed in human primary medulloblastoma specimens to investigate microRNA involvement in medulloblastoma carcinogenesis. We identified specific micro-RNA expression patterns which distinguish medulloblastoma differing in histotypes (anaplastic, classic and desmoplastic), in molecular features (ErbB2 or c-Myc overexpressing tumors) and in disease-risk stratification. MicroRNAs expression profile clearly differentiates medulloblastoma from either adult or fetal normal cerebellar tissues. Only a few microRNAs displayed upregulated expression, while most of them were downregulated in tumor samples, suggesting a tumor growth-inhibitory function. This property has been addressed for miR-9 and miR-125a, whose rescued expression promoted medulloblastoma cell growth arrest and apoptosis while targeting the proproliferative truncated TrkC isoform. In conclusion, misregulated microRNA expression profiles characterize human medulloblastomas, and may provide potential targets for novel therapeutic strategies.
Impact of miRNA-mRNA Profiling and Their Correlation on Medulloblastoma Tumorigenesis
Molecular therapy. Nucleic acids, 2018
Medulloblastoma (MB) is a clinically challenging, childhood brain tumor with a diverse genetic makeup and differential miRNA profile. Aiming to identify deregulated miRNAs in MB, the miRNA expression profile of human MB samples was compared to that of normal cerebellar tissues. As a result, 8 upregulated and 64 downregulated miRNAs were identified in MB samples. Although various algorithms have been developed to predict the interaction between miRNA-mRNA pairs, the complexity and fidelity of miRNA-mRNA remain a concern. Therefore, to identify the signatures of miRNA-mRNA interactions essential for MB pathogenesis, miRNA profiling, RNA sequencing, and ingenuity pathway analysis (IPA) were performed in the same primary human MB samples. Further, when miR-217 was inhibited, a significant upregulation of predicted target genes SIRT1, ROBO1, FOXO3, and SMAD7 in HDMB03 cells was observed, confirming the validity of our approach. Functional analysis revealed that the inhibition of miR-217 ...
PLOS One, 2011
Medulloblastoma (MB) is the most common malignant brain tumor in children and a leading cause of cancer-related mortality and morbidity. Several molecular sub-types of MB have been identified, suggesting they may arise from distinct cells of origin. Data from animal models indicate that some MB sub-types arise from multipotent cerebellar neural stem cells (NSCs). Hence, microRNA (miRNA) expression profiles of primary MB samples were compared to CD133+ NSCs, aiming to identify deregulated miRNAs involved in MB pathogenesis. Expression profiling of 662 miRNAs in primary MB specimens, MB cell lines, and human CD133+ NSCs and CD1332 neural progenitor cells was performed by qRT-PCR. Clustering analysis identified two distinct sub-types of MB primary specimens, reminiscent of sub-types obtained from their mRNA profiles. 21 significantly up-regulated and 12 significantly down-regulated miRNAs were identified in MB primary specimens relative to CD133+ NSCs (p,0.01). The majority of up-regulated miRNAs mapped to chromosomal regions 14q32 and 17q. Integration of the predicted targets of deregulated miRNAs with mRNA expression data from the same specimens revealed enrichment of pathways regulating neuronal migration, nervous system development and cell proliferation. Transient over-expression of a down-regulated miRNA, miR-935, resulted in significant down-regulation of three of the seven predicted miR-935 target genes at the mRNA level in a MB cell line, confirming the validity of this approach. This study represents the first integrated analysis of MB miRNA and mRNA expression profiles and is the first to compare MB miRNA expression profiles to those of CD133+ NSCs. We identified several differentially expressed miRNAs that potentially target networks of genes and signaling pathways that may be involved in the transformation of normal NSCs to brain tumor stem cells. Based on this integrative approach, our data provide an important platform for future investigations aimed at characterizing the role of specific miRNAs in MB pathogenesis. Citation: Genovesi LA, Carter KW, Gottardo NG, Giles KM, Dallas PB (2011) Integrated Analysis of miRNA and mRNA Expression in Childhood Medulloblastoma Compared with Neural Stem Cells. PLoS ONE 6(9): e23935.
MicroRNAmRNA expression profiles associated with medulloblastoma subgroup 4
Cancer Management and Research
Purpose: Medulloblastoma (MB), the most common malignant brain tumor in children, is divided into four tumor subgroups: wingless-type (WNT), sonic hedgehog (SHH), Group 3, and Group 4. Ideally, clinical practice and treatment design should be subgroup specific. While WNT and SHH subgroups have well-defined biomarkers, distinguishing Group 3 from Group 4 is not straightforward. MicroRNAs (miRNAs), which regulate posttranscriptional gene expression, are involved in MB tumorigenesis. However, the miRNA-messenger RNA (mRNA) regulatory network in MB is far from being fully understood. Our aims were to investigate miRNA expression regulation in MB subgroups, to assess miRNA target relationships, and to identify miRNAs that can distinguish Group 3 from Group 4. Patients and methods: With these aims, integrated transcriptome mRNA and miRNA expression analysis was performed on primary tumor samples collected from 18 children with MB, using miRNA sequencing (miRNA-seq), RNA sequencing (RNA-seq), and quantitative PCR. Results: Of all the expressed miRNAs, 19 appeared to be significantly differentially expressed (DE) between Group 4 and non-Group 4 subgroups (false discovery rate [FDR] <0.05), including 10 miRNAs, which, for the first time, are reported to be in conjunction with MB. RNA-seq analysis identified 165 genes that were DE between Group 4 and the other subgroups (FDR <0.05), among which seven are predicted targets of five DE miRNAs and exhibit inverse expression pattern. Conclusion: This study identified miRNA molecules that may be involved in Group 4 etiology, in general, and can distinguish between Group 3 and Group 4, in particular. In addition, understanding the involvement of miRNAs and their targets in MB may improve diagnosis and advance the development of targeted treatment for MB.
Silencing of the miR-17∼92 Cluster Family Inhibits Medulloblastoma Progression
Cancer Research, 2013
Medulloblastoma, originating in the cerebellum, is the most common malignant brain tumor in children. Medulloblastoma consists of four major groups where constitutive activation of the Sonic Hedgehog (SHH) signaling pathway is a hallmark of one group. Mouse and human SHH medulloblastomas exhibit increased expression of microRNAs encoded by the miR-17∼92 and miR-106b∼25 clusters compared with granule progenitors and postmitotic granule neurons. Here, we assessed the therapeutic potential of 8-mer seed-targeting locked nucleic acid (LNA)-modified anti-miR oligonucleotides, termed tiny LNAs, that inhibit microRNA seed families expressed by miR-17∼92 and miR-106b∼25 in two mouse models of SHH medulloblastomas. We found that tumor cells (medulloblastoma cells) passively took up 8-mer LNA-anti-miRs and specifically inhibited targeted microRNA seed-sharing family members. Inhibition of miR-17 and miR-19a seed families by anti-miR-17 and anti-miR-19, respectively, resulted in diminished tum...
Acta Neuropathologica Communications
Genome-wide expression profiling studies have identified four core molecular subgroups of medulloblastoma: WNT, SHH, Group 3 and Group 4. Molecular markers are necessary for accurate risk stratification in the non-WNT subgroups due to the underlying heterogeneity in genetic alterations and overall survival. MiR-204 expression was evaluated in molecularly classified 260 medulloblastomas from an Indian cohort and in 763 medulloblastomas from the MAGIC cohort, SickKids, Canada. Low expression of miR-204 in the Group 3 / Group 4 tumors identify a highly aggressive subset of tumors having poor overall survival, in the two independent cohorts of medulloblastomas. Downregulation of miR-204 expression correlates with poor survival within the Group 4 as well indicating it as a valuable risk-stratification marker in the subgroup. Restoration of miR-204 expression in multiple medulloblastoma cell lines was found to inhibit their anchorage-independent growth, invasion potential and tumorigenicity. IGF2R was identified as a novel target of miR-204. MiR-204 expression resulted in downregulation of both M6PR and IGF2R that transport lysosomal proteases from the Golgi apparatus to the lysosomes. Consistent with this finding, miR-204 expression resulted in reduction in the levels of the lysosomal proteases in medulloblastoma cells. MiR-204 expression also resulted in inhibition of autophagy that is known to be dependent on the lysosomal degradation pathway and LC3B, a known miR-204 target. Treatment with HDAC inhibitors resulted in upregulation of miR-204 expression in medulloblastoma cells, suggesting therapeutic role for these inhibitors in the treatment of medulloblastomas. In summary, miR-204 is not only a valuable risk stratification marker in the combined cohort of Group 3 / Group 4 medulloblastomas as well as in the Group 4 itself, that has paucity of good prognostication markers, but also has therapeutic potential as indicated by its tumor suppressive effect on medulloblastoma cells.
Silencing of the miR-17∼92 Cluster Family Inhibits Medulloblastoma Progression
Cancer Research, 2013
Medulloblastoma, originating in the cerebellum, is the most common malignant brain tumor in children. Medulloblastoma consists of four major groups where constitutive activation of the Sonic Hedgehog (SHH) signaling pathway is a hallmark of one group. Mouse and human SHH medulloblastomas exhibit increased expression of microRNAs encoded by the miR-17$92 and miR-106b$25 clusters compared with granule progenitors and postmitotic granule neurons. Here, we assessed the therapeutic potential of 8-mer seedtargeting locked nucleic acid (LNA)-modified anti-miR oligonucleotides, termed tiny LNAs, that inhibit microRNA seed families expressed by miR-17$92 and miR-106b$25 in two mouse models of SHH medulloblastomas. We found that tumor cells (medulloblastoma cells) passively took up 8-mer LNA-anti-miRs and specifically inhibited targeted microRNA seed-sharing family members. Inhibition of miR-17 and miR-19a seed families by anti-miR-17 and anti-miR-19, respectively, resulted in diminished tumor cell proliferation in vitro. Treatment of mice with systemic delivery of anti-miR-17 and anti-miR-19 reduced tumor growth in flank and brain allografts in vivo and prolonged the survival of mice with intracranial transplants, suggesting that inhibition of the miR-17$92 cluster family by 8-mer LNA-anti-miRs might be considered for the treatment of SHH medulloblastomas. Cancer Res; 73(23); 7068-78. Ó2013 AACR.
Detection and quantification of extracellular microRNAs in medulloblastoma
Journal of Cancer Metastasis and Treatment, 2015
Aim: Medulloblastoma (MB) is the most common malignant brain tumor in children. The crucial role of extracellular-microRNAs (ex-miRNAs) in cancer has been widely recognized; however, their role in MB remains unknown. This study aimed to investigate MB-driven ex-miRNAs. Methods: Microarray analysis was used to disclose the identity and quantity of key miRNAs excreted in culture-medium (CM) of 3 human MB cell lines and cerebrospinal fluid (CSF) of brain tumors (including MB) and leukemia patients. MiRNA expression was validated by quantitative reverse transcription polymerase chain reaction. Results: We have demonstrated that the 3 MB cell lines tested commonly expressed 1,083 miRNAs in their spent CM. Among them, 57 miRNAs were specific to the CM of metastasis-related cell lines which represents the aggressive group 3 and group 4 MB subtypes. A significant number (1,254) of ex-miRNAs were identified in the CSF of a MB patient. Eighty-six of these miRNAs were found to be differentially expressed in this patient's CSF compared with controls. Interestingly, 3 metastasis-associated miRNAs over-represented in CM of metastasis-related MB cell lines were found to be significantly enriched in the CSF of the MB patient. Conclusion: Although more samples are required to fully verify these results, our work provides the first evidence for the presence of a significant amount of miRNAs excreted extracellularly by MB cells and raises the possibility that, in the near future, miRNAs could be probed in CSF of MB patients and serve as novel biological markers.