Stability for Parabolic Quasiminimizers (original) (raw)

This paper studies parabolic quasiminimizers which are solutions to parabolic variational inequalities. We show that, under a suitable regularity condition on the boundary, parabolic Q-quasiminimizers related to the parabolic p-Laplace equations with given boundary values are stable with respect to parameters Q and p. The argument is based on variational techniques, higher integrability results and regularity estimates in time. This shows that stability does not only hold for parabolic partial differential equations but it also holds for variational inequalities.