A novel binding mode reveals two distinct classes of NMDA receptor GluN2B-selective antagonists (original) (raw)
Related papers
Frontiers in Pharmacology
N-methyl D-aspartate receptors (NMDAR) play crucial role in normal brain function and pathogenesis of neurodegenerative and psychiatric disorders. Functional tetra-heteromeric NMDAR contains two obligatory GluN1 subunits and two identical or different non-GluN1 subunits that include six different gene products; four GluN2 (A-D) and two GluN3 (A-B) subunits. The heterogeneity of subunit combination facilities the distinct function of NMDARs. All GluN subunits contain an extracellular N-terminal Domain (NTD) and ligand binding domain (LBD), transmembrane domain (TMD) and an intracellular C-terminal domain (CTD). Interaction between the GluN1 and co-assembling GluN2/3 subunits through the LBD has been proven crucial for defining receptor deactivation mechanisms that are unique for each combination of NMDAR. Modulating the LBD interactions has great therapeutic potential. In the present work, by amino acid point mutations and electrophysiology techniques, we have studied the role of LBD interactions in determining the effect of well-characterized pharmacological agents including agonists, competitive antagonists, and allosteric modulators. The results reveal that agonists (glycine and glutamate) potency was altered based on mutant amino acid sidechain chemistry and/or mutation site. Most antagonists inhibited mutant receptors with higher potency; interestingly, clinically used NMDAR channel blocker memantine was about threefold more potent on mutated receptors (N521A, N521D, and K531A) than wild type receptors. These results provide novel insights on the clinical pharmacology of memantine, which is used for the treatment of mild to moderate Alzheimer's disease. In addition, these findings demonstrate the central role of LBD interactions that can be exploited to develop novel NMDAR based therapeutics.
Bioorganic & Medicinal Chemistry, 2018
The NMDA receptor containing GluN2B subunits represents a promising target for the development of drugs for the treatment of various neurological disorders including neurodegenerative diseases. In order to study the role of CH 3 and OH moieties trisubstituted tetrahydro-3-benzazepines 4 were designed as missing link between tetra-and disubstituted 3-benzazepines 2 and 5. The synthesis of 4 comprises eight reaction steps starting from alanine. The intramolecular Friedel-Crafts acylation to obtain the ketone 12 and the base-catalyzed elimination of trifluoromethanesulfinate (CF 3 SO 2 À) followed by NaBH 4 reduction represent the key steps. The GluN2B affinity of the cis-configured 3-benzazepin-1-ol cis-4a with a 4phenylbutyl side chain (K i = 252 nM) is considerably lower than the GluN2B affinity of (R,R)-2 (K i = 17 nM) indicating the importance of the phenolic OH moiety for the interaction with the receptor protein. Introduction of an additional CH 3 moiety in 2-position led to a slight decrease of GluN2B affinity as can be seen by comparing the affinity data of cis-4a and 5. The homologous phenylpentyl derivative cis-4b shows the highest GluN2B affinity (K i = 56 nM) of this series of compounds. According to docking studies cis-4a adopts the same binding mode as the cocrystallized ligand ifenprodil-keto 1A and 5 at the interface of the GluN2B and GluN1a subunits. The same crucial H-bonds are formed between the C(@O) NH 2 moiety of Gln110 within the GluN2B subunit and the protonated amino moiety and the OH moiety of (R,R)-cis-4a.
Molecular pharmacology, 2017
NMDA receptors are ligand-gated, cation-selective channels that mediate a slow component of excitatory synaptic transmission. Subunit-selective positive allosteric modulators of NMDA receptor function have therapeutically-relevant effects on multiple processes in the brain. A series of pyrrolidinones, such as PYD-106, that selectively potentiate NMDA receptors that contain the GluN2C subunit have structural determinants of activity that reside between the GluN2C amino terminal domain and the GluN2C agonist binding domain, suggesting a unique site of action. Here we use molecular biology and homology modelling to identify residues that line a candidate binding pocket for GluN2C-selective pyrrolidinones. We also show that occupancy of only one site in diheteromeric receptors is required for potentiation. Both GluN2A and GluN2B can dominate the sensitivity of triheteromeric receptors to eliminate the actions of pyrrolidinones, thus rendering this series uniquely sensitive to subunit st...
Benzimidazolone bioisosteres of potent GluN2B selective NMDA receptor antagonists
Overactivation of the NMDA receptor is associated with excitotoxic events leading to neurodegenerative processes as observed during the development of Alzheimer's disease, ParFnson's disease, Chorea Huntington and epilepsy. Negative allosteric modulators addressing selectively the ifenprodil binding site of GluN2B subunit containing NMDA receptors are of major interest due to their neuroprotective potential accompanied by few side effects. Herein benzimidazolone bioisosteres of potent GluN2B antagonists 1e5 were designed and synthesized. A seven step sequence provided the central intermediate 19 in 28% yield. Elimination of water, methylation, epoxidation, epoxide rearrangement and finally reductive amination afforded the [7]annulenobenzimidazolone 30 with a 3-phenylpropylamino substituent in 6-position. Although 30 fits nicely into the pharmacophore of potent GluN2B antagonists, the gluN2B binding affinity of 30 was only moderate (K i ¼ 697 nM). Additionally, 30 shows low selectivity over the s 2 receptor (K i ¼ 549 nM). The moderate GluN2B affinity was explained by the rigid tricyclic structure of the [7]annulenobenzimidazolone 30.
Ifenprodil Effects on GluN2B-Containing Glutamate Receptors
Molecular Pharmacology, 2012
N-Methyl-D-aspartate (NMDA) receptors are glutamate-and glycine-gated channels that mediate fast excitatory transmission in the central nervous system and are critical to synaptic development, plasticity, and integration. They have a rich complement of modulatory sites, which represent important pharmacological targets. Ifenprodil is a well tolerated NMDA receptor inhibitor; it is selective for GluN2B-containing receptors and has neuroprotective effects. The mechanism by which ifenprodil inhibits NMDA receptor responses is not fully understood. The inhibition is incomplete and noncompetitive with other known NMDA receptor agonists or modulators, although reciprocal effects have been reported between ifenprodil potency and that of extracellular ligands including glutamate, glycine, zinc, protons, and polyamines. Recent structural studies revealed that ifenprodil binds to a unique site at the interface between the extracellular N termini of GluN1 and GluN2B subunits, supporting the view that interactions with other extracellular modulators are indirect. In this study, we examined how ifenprodil affects the gating reaction of NMDA receptors in conditions designed to minimize actions by contemporaneous ligands. We found that ifenprodil decreased NMDA receptor equilibrium open probability by raising an energetic barrier to activation and also by biasing the receptor toward low open probability gating modes. These results demonstrate intrinsic effects of ifenprodil on NMDA receptor stationary gating kinetics and provide means to anticipate how ifenprodil will affect receptor responses in defined physiological and pathological circumstances.
Communications Biology
N-methyl-D-aspartate receptors (NMDARs), especially GluN2B-containing NMDARs, are associated with neurodegenerative diseases like Parkinson, Alzheimer and Huntington based on their high Ca2+ conductivity. Overactivation leads to high intracellular Ca2+ concentrations and cell death rendering GluN2B-selective inhibitors as promising drug candidates. Ifenprodil represents the first highly potent prototypical, subtype-selective inhibitor of GluN2B-containing NMDARs. However, activity of ifenprodil on serotonergic, adrenergic and sigma receptors limits its therapeutic use. Structural reorganization of the ifenprodil scaffold to obtain 3-benzazepines retained inhibitory GluN2B activity but decreased the affinity at the mentioned non-NMDARs. While scaffold optimization improves the selectivity, the molecular inhibitory mechanism of these compounds is still not known. Here, we show a common inhibitory mechanism of ifenprodil and the related 3-benzazepines by mutational modifications of the...
Role of the phenolic OH moiety of GluN2B-selective NMDA antagonists with 3-benzazepine scaffold
Bioorganic & medicinal chemistry letters, 2016
In order to analyze the role of the phenolic OH moiety of ifenprodil (1) and 3-benzazepin-1,7-diol 2 for the affinity and selectivity at GluN2B subunit containing NMDA receptors, the 3-benzazepin-1-ols 3 were designed, synthesized and pharmacologically evaluated and furthermore, the molecular interactions of the phenylbutyl derivative 3c with the GluN2B receptor were investigated. In order to avoid decarbonylation during the intramolecular Friedel-Crafts acylation of 11, the N-atom has to be protected with a trifluoromethylsulfonyl group. The second key step of the synthesis was the removal of the N-triflyl group, which was realized by K2CO3 induced elimination of trifluoromethanelsulfinate (F3CSO2(-)). In receptor binding studies with the radioligand [(3)H]ifenprodil the 3-benzazepin-1-ol 3c revealed a GluN2B affinity of 73 nM indicating that the phenolic OH moiety of 1 and 2 is not essential but favorable for high GluN2B affinity. In docking studies 3-benzazepin-1-ol 3c shows the ...