Sporadic amyotrophic lateral sclerosis: is SMN-Gemins protein complex of importance for the relative resistance of oculomotor nucleus motoneurons to degeneration? (original) (raw)

Immunoexpression of gemins 2 and 4 in the rat spinal cord. Is the SMN complex a new target in investigations of sporadic amyotrophic lateral sclerosis pathogenesis?

Folia Neuropathologica, 2012

Sporadic amyotrophic lateral sclerosis (sALS) is a neurodegenerative disease leading to degeneration and loss of motoneurons in different structures of the nervous system. Although aetiology of the disease is unknown, it is hypothesized that the survival motor neuron (SMN) protein which protects motoneurons in spinal muscular atrophy, may play a similar role in ALS. Relatively little is known about normal expression and functions of the SMN complex compounds, i.e. SMN protein and the related gemins. Therefore, we have decided to examine the physiological expression of SMN and gemins 2 and 4 in spinal cords of healthy Wistar rats at different age using immunofluorescence and immunohistochemical methods. Our study revealed that (1) in rat spinal cord neurons, the immunoexpression of SMN and gemins 2 and 4 is present through the whole animal lifespan although the reactive cells reveal different intensity of the immunolabeling, (2) both SMN and gemin 2, and SMN and gemin 4 are present in the same motoneurons, (3) immunoexpression of gemin 2 and 4 decreases slightly with aging.

Diverse expression of selected SMN complex proteins in humans with sporadic amyotrophic lateral sclerosis and in a transgenic rat model of familial form of the disease

PloS one, 2014

There is circumstantial evidence linking sporadic amyotrophic lateral sclerosis (ALS) cases to a malfunction or deficit of a multimeric SMN complex that scrutinizes cellular RNAs; the core of this complex is survival motor neuron (SMN, or gemin 1) protein. We intended to verify this hypothesis by comparing the expression of both SMN and several other functionally associated gemins in the anterior horn motoneurons of patients who died of sporadic ALS (sALS), of transgenic rats with overexpression of the mutated human superoxide dismutase 1 gene (SOD1(G93A)) that represent a model of familial ALS (fALS), and of the respective controls. Using archival material of paraffin blocks with samples of human and rat spinal cords, immunohistochemical reactions with antibodies against SMN and gemins 2, 3, and 4 were performed and assessed by light microscopy. The expression of SMN and all other studied gemins was observed in motoneurons of sALS patients, fALS rats, and in all controls, although ...

The Potential Connection between Molecular Changes and Biomarkers Related to ALS and the Development and Regeneration of CNS

International Journal of Molecular Sciences

Neurodegenerative diseases are one of the greatest medical burdens of the modern age, being mostly incurable and with limited prognostic and diagnostic tools. Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by the loss of motoneurons, with a complex etiology, combining genetic, epigenetic, and environmental causes. The neuroprotective therapeutic approaches are very limited, while the diagnostics rely on clinical examination and the exclusion of other diseases. The recent advancement in the discovery of molecular pathways and gene mutations involved in ALS has deepened the understanding of the disease pathology and opened the possibility for new treatments and diagnostic procedures. Recently, 15 risk loci with distinct genetic architectures and neuron-specific biology were identified as linked to ALS through common and rare variant association analyses. Interestingly, the quantity of related proteins to these genes has been found t...

Auto-antibodies against proteins of spinal cord cells in cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS)

Folia neuropathologica / Association of Polish Neuropathologists and Medical Research Centre, Polish Academy of Sciences, 2006

Aetiology and pathogenesis of amyotrophic lateral sclerosis (ALS) is still a mystery. Among several hypotheses autoimmune mechanisms are also taken into account. We report here our investigations of auto-antibodies against proteins of spinal cord cells in the cerebrospinal fluid (CSF) and serum of ALS patients. The results were correlated with the severity of disease course. The subjects were 57 ALS patients (29 severe, 28 mild) and 10 normal controls. The major finding in CSF was the presence of antibodies against a 70 kD protein in the majority of ALS patients. This protein was identified as neurofilament 68. The second protein of high reactivity and frequency of appearance was a 82 kD protein, which was identified as a-actinin. Less reactive and less frequent were antibodies directed against 55 kD and 40 kD proteins. They were immunologically defined to be related to desmin and actin, resp. The difference between the reactivity of anti-neurofilament and anti-desmin related protei...

Gemin2 Plays an Important Role in Stabilizing the Survival of Motor Neuron Complex

Journal of Biological Chemistry, 2007

The survival of motor neuron (SMN) protein, responsible for the neurodegenerative disease spinal muscular atrophy (SMA), oligomerizes and forms a stable complex with seven other major components, the Gemin proteins. Besides the SMN protein, Gemin2 is a core protein that is essential for the formation of the SMN complex, although the mechanism by which it drives formation is unclear. We have found a novel interaction, a Gemin2 self-association, using the mammalian two-hybrid system and the in vitro pull-down assays. Using in vitro dissociation assays, we also found that the self-interaction of the amino-terminal SMN protein, which was confirmed in this study, became stable in the presence of Gemin2. In addition, Gemin2 knockdown using small interference RNA treatment revealed a drastic decrease in SMN oligomer formation and in the assembly activity of spliceosomal small nuclear ribonucleoprotein (snRNP). Taken together, these results indicate that Gemin2 plays an important role in snRNP assembly through the stabilization of the SMN oligomer/complex via novel self-interaction. Applying the results/techniques to amino-terminal SMN missense mutants that were recently identified from SMA patients, we successfully showed that amino-terminal self-association, Gemin2 binding, the stabilization effect of Gemin2, and snRNP assembly activity were all lowered in the mutant SMN(D44V), suggesting that instability of the amino-terminal SMN self-association may cause SMA in patients carrying this allele.

The survival motor neuron protein in spinal muscular atrophy

Human Molecular Genetics, 1997

C , cause proximal spinal muscular atrophy (SMA), an autosomal recessive disorder that results in loss of motor neurons. SMN is found in the cytoplasm and nucleus. The nuclear form is located in structures termed gems. Using a panel of anti-SMN antibodies, we demonstrate that the SMN protein is expressed from both the SMN T and SMN C genes. Western blot analysis of fibroblasts from SMA patients with various clinical severities of SMA showed a moderate reduction in the amount of SMN protein, particularly in type I (most severe) patients. Immunocytochemical analysis of SMA patient fibroblasts indicates a significant reduction in the number of gems in type I SMA patients and a correlation of the number of gems with clinical severity. This correlation to phenotype using primary fibroblasts may serve as a useful diagnostic tool in an easily accessible tissue. SMN is expressed at high levels in brain, kidney and liver, moderate levels in skeletal and cardiac muscle, and low levels in fibroblasts and lymphocytes. In SMA patients, the SMN level was moderately reduced in muscle and lymphoblasts. In contrast, SMN was expressed at high levels in spinal cord from normals and non-SMA disease controls, but was reduced 100-fold in spinal cord from type I patients. The marked reduction of SMN in type I SMA spinal cords is consistent with the features of this motor neuron disease. We suggest that disruption of SMN T in type I patients results in loss of SMN from motor neurons, resulting in the degeneration of these neurons.

Pathophysiology of Amyotrophic Lateral Sclerosis

Current Advances in Amyotrophic Lateral Sclerosis, 2013

Recently, mutations in the gene codifying for the fused in sarcoma protein (FUS) have been linked to fALS. Indeed, spinal cord LMNs in fALS and sALS but not in mSOD1-fALS are immunoreactive for FUS inclusions. These inclusions also present immunoreactivity for TDP-43 and ubiquitin (Chaudhuri et al., 1995).

Deregulated expression of cytoskeleton related genes in the spinal cord and sciatic nerve of presymptomatic SOD1G93A Amyotrophic Lateral Sclerosis mouse model

Frontiers in Cellular Neuroscience, 2014

Early molecular events related to cytoskeleton are poorly described in Amyotrophic Lateral Sclerosis (ALS), especially in the Schwann cell (SC), which offers strong trophic support to motor neurons. Database for Annotation, Visualization and Integrated Discovery (DAVID) tool identified cytoskeleton-related genes by employing the Cellular Component Ontology (CCO) in a large gene profiling of lumbar spinal cord and sciatic nerve of presymptomatic SOD1 G93A mice. One and five CCO terms related to cytoskeleton were described from the spinal cord deregulated genes of 40 days (actin cytoskeleton) and 80 days (microtubule cytoskeleton, cytoskeleton part, actin cytoskeleton, neurofilament cytoskeleton, and cytoskeleton) old transgene mice, respectively. Also, four terms were depicted from the deregulated genes of sciatic nerve of 60 days old transgenes (actin cytoskeleton, cytoskeleton part, microtubule cytoskeleton and cytoskeleton). Kif1b was the unique deregulated gene in more than one studied region or presymptomatic age. The expression of Kif1b [quantitative polymerase chain reaction (qPCR)] elevated in the lumbar spinal cord (40 days old) and decreased in the sciatic nerve (60 days old) of presymptomatic ALS mice, results that were in line to microarray findings. Upregulation (24.8 fold) of Kif1b was seen in laser microdissected enriched immunolabeled motor neurons from the spinal cord of 40 days old presymptomatic SOD1 G93A mice. Furthermore, Kif1b was dowregulated in the sciatic nerve Schwann cells of presymptomatic ALS mice (60 days old) that were enriched by means of cell microdissection (6.35 fold), cell sorting (3.53 fold), and primary culture (2.70 fold) technologies. The gene regulation of cytoskeleton molecules is an important occurrence in motor neurons and Schwann cells in presymptomatic stages of ALS and may be relevant in the dying back mechanisms of neuronal death. Furthermore, a differential regulation of Kif1b in the spinal cord and sciatic nerve cells emerged as key event in ALS.

Increased Axonal Ribosome Numbers Is an Early Event in the Pathogenesis of Amyotrophic Lateral Sclerosis

PLoS ONE, 2014

Myelinating glia cells support axon survival and functions through mechanisms independent of myelination, and their dysfunction leads to axonal degeneration in several diseases. In amyotrophic lateral sclerosis (ALS), spinal motor neurons undergo retrograde degeneration, and slowing of axonal transport is an early event that in ALS mutant mice occurs well before motor neuron degeneration. Interestingly, in familial forms of ALS, Schwann cells have been proposed to slow disease progression. We demonstrated previously that Schwann cells transfer polyribosomes to diseased and regenerating axons, a possible rescue mechanism for disease-induced reductions in axonal proteins. Here, we investigated whether elevated levels of axonal ribosomes are also found in ALS, by analysis of a superoxide dismutase 1 (SOD1) G93A mouse model for human familial ALS and a patient suffering from sporadic ALS. In both cases, we found that the disorder was associated with an increase in the population of axonal ribosomes in myelinated axons. Importantly, in SOD1 G93A mice, the appearance of axonal ribosomes preceded the manifestation of behavioral symptoms, indicating that upregulation of axonal ribosomes occurs early in the pathogenesis of ALS. In line with our previous studies, electron microscopy analysis showed that Schwann cells might serve as a source of axonal ribosomes in the disease-compromised axons. The early appearance of axonal ribosomes indicates an involvement of Schwann cells early in ALS neuropathology, and may serve as an early marker for disease-affected axons, not only in ALS, but also for other central and peripheral neurodegenerative disorders.