Cutting Parameters and the Machinability Performance (original) (raw)
Abstract
Optimizing cutting parameters is very significant to obtain good machined surface and meet engineering specifications. It is also can save energy, reduce waste, save processing time, and increase tool life [1]. Generally, there are four types of cutting parameters normally associated with machining operation, i.e., cutting speed, spindle speed, depth of cut, and feed rate [2-6]. All of these parameters have been identified as the influential factors in determining the surface quality of every machined part. Most of the researchers focused on four cutting parameters during their studies on optimization in composite machining. They are spindle speed, cutting speed, depth of cut, and feed rate [7-9]. In general, the best machined surface quality is being determined by the kind of material being cut, and the size and type of the cutter used, width and depth of cut, method of application, and speed available are factors relating to machinability performance. 2.1.1 Cutting Speed (m/min) The cutting speed expressed in meters per minute (m/min) must not be confused with the spindle speed which is expressed in revolution per minute (rpm). Cutting speed represents the rate of the cutter passed over the surface of the machined part, whereby the spindle speed is obtained by calculating from a selected cutting speed. The cutting speed of a metal may be defined as the speed, in surface feet per minute or linear feet per minute (sf/min or mm/min) that a given tooth (flute) at which the metal may be machined efficiently. When the work is machined on a milling machine, the cutter must be revolved at a specific number of (r/min), depending on its diameter to achieve the proper cutting speed. In workshop practices, the machinist used spindle
Figures (2)
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (29)
- Pang, J. S., Ansari, M. N. M., Zaroog, O. S., Ali, M. H., & Sapuan, S. M. (2013). Taguchi design optimization of machining parameters on the CNC end milling process of halloysite nanotube with aluminium reinforced epoxy matrix (HNT/Al/Ep) hybrid composite. HBRC Journal, 10(2), 138-144. https://doi.org/10.1016/j.hbrcj.2013.09.007.
- Yang, Y., Chuang, M., & Lin, S. (2009). Optimization of dry machining parameters for high- purity graphite in end milling process via design of experiments methods. Journal of Materials Processing Technology, 209, 4395-4400. https://doi.org/10.1016/j.jmatprotec.2008.11.021.
- Alberti, M., Ciurana, J., & Casadesus, M. (2005). A system for optimising cutting parameters when planning milling operations in high-speed machining. Journal of Materials Processing Technology, 168(1), 25-35. https://doi.org/10.1016/j.jmatprotec.2004.09.092.
- Aggarwal, A., & Singh, H. (2005). Optimization of machining techniques-A retrospective and literature review. Sadhana, 30(6), 699-711. https://doi.org/10.1007/BF02716704.
- Vivancos, J., Luis, C. J., Costa, L., & Ort, J. A. (2004). Optimal machining parameters selection in high speed milling of hardened steels for injection moulds. Journal of Material Processing Technology, 156, 1505-1512. https://doi.org/10.1016/j.jmatprotec.2004.04.260.
- Dharan, C. K. H., & Won, M. S. (2000). Machining parameters for an intelligent machining system for composite laminates. International Journal of Machine Tools and Manufacture, 40(3), 415-426. https://doi.org/10.1016/S0890-6955(99)00065-6.
- Mohamed, S. B., Mohamad, W. N. F., Muhamad, M., Ismail, J., Yew, B. S., Mohd, A., et al. (2016). The effects of cutting parameters on surface texture of hybrid composite CFRP/AL2024. Materials Science Forum, 863, 111-115. https://doi.org/10.4028/www.scientific.net/MSF.86 3.111.
- Mohamed, S. B., Wan Mohamad, W. N. F., Seok, Y. B., Minhat, M., Kasim, M. S., Ibrahim, Z., et al. (2015). Machining parameters optimization for trimming operation in a milling machine using two level factorial design. Applied Mechanics and Materials, 790, 105-110. https://doi. org/10.4028/www.scientific.net/AMM.789-790.105.
- Venkata, K., Krishnam, M., & Janardhana, G. R. (2011). Optimization of cutting conditions for surface roughness in CNC end milling. International Journal of Precission Engineering and Manufacturing, 12(3), 383-391. https://doi.org/10.1007/s12541-011-0050-7.
- Davim, J. P., & Reis, P. (2005). Damage and dimensional precision on milling carbon fiber- reinforced plastics using design experiments. Journal of Materials Processing Technology, 160, 160-167. https://doi.org/10.1016/j.jmatprotec.2004.06.003.
- Rajmohan, T., Palanikumar, K., & Kathirvel, M. (2012). Optimization of machining parameters in drilling hybrid aluminium metal matrix composites. Transactions of Nonferrous Metals Society of China, 22(6), 1286-1297. https://doi.org/10.1016/S1003-6326(11)61317-4.
- Sait, A. N., Aravindan, S., & Haq, A. N. (2008). Optimisation of machining parameters of glass- fibre-reinforced plastic (GFRP) pipes by desirability function analysis using Taguchi technique. The International Journal of Advanced Manufacturing Technology, 43(5-6), 581-589. https:// doi.org/10.1007/s00170-008-1731-y.
- Kumar, S., Satsangi, P. S., & Sardana, H. K. (2012). Optimization of surface roughness in turning unidirectional glass fiber reinforced plastics (UD-GFRP) composites using polycrys- talline diamond (PCD) cutting tool. Indian Journal of Engineering & Materials Sciences, 19, 163-174.
- Haddad, M., Zitoune, R., Eyma, F., & Castanie, B. (2014). Study of the surface defects and dust generated during trimming of CFRP: Influence of tool geometry, machining parameters and cutting speed range. Composites: Part A, 66, 142-154. https://doi.org/10.1016/j.composit esa.2014.07.005.
- Zenia, S., Ayed, L. B., Nouari, M., & Delamézière, A. (2014). Numerical analysis of the interaction between the cutting forces, induced cutting damage, and machining parameters of CFRP composites. International Advanced Manufacturing Technology. https://doi.org/10.100 7/s00170-014-6600-2.
- Anderson, M. (1997). Design of Experiments. American Institute of Physics, 24-26. Retrieved from https://www.researchgate.net/profile/Mark\_Anderson43/publication/2280180 75_Design_of_Experiments/links/54997a390cf21eb3df60d33a.pdf.
- Gonzales, A. G. (1998). Two level factorial experimental designs based on multiple lin- ear regression models A tutorial digest illustrated by case studies. Analytica Chimica Acta, 360(1-3), 227-241. https://doi.org/10.1016/S0003-2670(97)00701-0.
- Palanikumar, K., Karunamoorthy, L., & Karthikeyan, R. (2004). Optimizing the machining parameters for minimum surface roughness in turning of GFRP composites using design of experiments, 20(4), 373-378.
- Benyounis, K. Y., & Olabi, A. G. (2008). Optimization of different welding processes using statistical and numerical approaches-A reference guide. Advances in Engineering Software, 39(6), 483-496. https://doi.org/10.1016/j.advengsoft.2007.03.012.
- Sait, A. N., Aravindan, S., & Haq, A. N. (2009). Optimisation of machining parameters of glass-fibre-reinforced plastic (GFRP) pipes by desirability function analysis using Taguchi technique, International Journal Advance of Manufacturing Technology (IJAMT), 581-589. http://dx.doi.org/10.1007/s00170-008-1731-y.
- Tsao, C. C., & Hocheng, H. (2004). Taguchi analysis of delamination associated with vari- ous drill bits in drilling of composite material. International Journal of Machine Tools and Manufacture (IJMACT), 44, 1085-1090. https://doi.org/10.1016/j.ijmachtools.2004.02.019.
- Desai, B., & Rana, J. (2012). Machining characterization of CFRP laminates with respect to drilling operation-A review. Journal of Engineering Research and Studies, III(IV), 8-12. Retrieved from http://www.technicaljournalsonline.com/jers/VOL%20III/JERS%20VOL%2 0III%20ISSUE%20IV%20OCTOBER%20DECEMBER%202012/Article%203%20Vol%20 III%20Issue%20IV.pdf.
- Haddad, M., Zitoune, R., Bougherara, H., Eyma, F., & Castanié, B. (2013). Study of trimming damages of CFRP structures in function of the machining processes and their impact on the mechanical behavior. Composites: Part B, 57, 136-143. https://doi.org/10.1016/j.composites b.2013.09.051.
- Haddad, M., Zitoune, R., Eyma, F., & Castanie, B. (2013). Machinability and surface quality during high speed trimming of multi directional CFRP. International Journal of Machining and Machinability of Materials, 13(2/3), 289-310. https://doi.org/10.1504/ijmmm.2013.053229.
- Pang, J. S., Ansari, M. N. M., Zaroog, O. S., Ali, M. H., & Sapuan, S. M. (2014). Taguchi design optimization of machining parameters on the CNC end milling process of halloysite nanotube with aluminium reinforced epoxy matrix (HNT/ Al/ Ep) hybrid composite. HBRC Journal, 10(2), 138-144. https://doi.org/10.1016/j.hbrcj.2013.09.007.
- Yahiaoui, I. (2010). Experimental design for copper cementation process in fixed bed reactor using two-level factorial design. Arabian Journal of Chemistry, 3(3), 187-190. https://doi.or g/10.1016/j.arabjc.2010.04.009.
- Noorani, R., Farooque, Y., & Ioi, T. (2010). Improving surface roughness of CNC Milling machined aluminum samples due to process parameter variation, pp. 1-7. Retreived from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.624.3481&rep=rep1&type=pdf.
- Cox, D. R., & Reid, N. (2000). The theory of the design of experiments. New York: Chapman & Hall/CRC.
- Slamani, M., Gauthier, S., & Chatelain, J. (2016). Comparison of surface roughness quality obtained by high speed CNC trimming and high speed robotic trimming for CFRP laminate. Robotics and Computer Integrated Manufacturing, 42, 63-72. https://doi.org/10.1016/j.rcim. 2016.05.004.