Cutting Parameters and the Machinability Performance (original) (raw)
Down Milling Trimming Process Optimization for Carbon Fiber-Reinforced Plastic
Optimizing cutting parameters is very significant to obtain good machined surface and meet engineering specifications. It is also can save energy, reduce waste, save processing time, and increase tool life [1]. Generally, there are four types of cutting parameters normally associated with machining operation, i.e., cutting speed, spindle speed, depth of cut, and feed rate [2-6]. All of these parameters have been identified as the influential factors in determining the surface quality of every machined part. Most of the researchers focused on four cutting parameters during their studies on optimization in composite machining. They are spindle speed, cutting speed, depth of cut, and feed rate [7-9]. In general, the best machined surface quality is being determined by the kind of material being cut, and the size and type of the cutter used, width and depth of cut, method of application, and speed available are factors relating to machinability performance. 2.1.1 Cutting Speed (m/min) The cutting speed expressed in meters per minute (m/min) must not be confused with the spindle speed which is expressed in revolution per minute (rpm). Cutting speed represents the rate of the cutter passed over the surface of the machined part, whereby the spindle speed is obtained by calculating from a selected cutting speed. The cutting speed of a metal may be defined as the speed, in surface feet per minute or linear feet per minute (sf/min or mm/min) that a given tooth (flute) at which the metal may be machined efficiently. When the work is machined on a milling machine, the cutter must be revolved at a specific number of (r/min), depending on its diameter to achieve the proper cutting speed. In workshop practices, the machinist used spindle