Co-assembly of Viral Envelope Glycoproteins Regulates Their Polarized Sorting in Neurons (original) (raw)

Glycoproteins gE and gI are required for efficient KIF1A-dependent anterograde axonal transport of alphaherpesvirus particles in neurons

Journal of virology, 2013

Alphaherpesviruses, including pseudorabies virus (PRV), spread directionally within the nervous systems of their mammalian hosts. Three viral membrane proteins are required for efficient anterograde-directed spread of infection in neurons, including Us9 and a heterodimer composed of the glycoproteins gE and gI. We previously demonstrated that the kinesin-3 motor KIF1A mediates anterograde-directed transport of viral particles in axons of cultured peripheral nervous system (PNS) neurons. The PRV Us9 protein copurifies with KIF1A, recruiting the motor to transport vesicles, but at least one unidentified additional viral protein is necessary for this interaction. Here we show that gE/gI are required for efficient anterograde transport of viral particles in axons by mediating the interaction between Us9 and KIF1A. In the absence of gE/gI, viral particles containing green fluorescent protein (GFP)-tagged Us9 are assembled in the cell body but are not sorted efficiently into axons. Import...

Herpes simplex virus type 1 glycoprotein B sorting in hippocampal neurons

Journal of General Virology, 2003

Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that spreads in the nervous system in functionally connected neurons. Determining how HSV-1 components are sorted in neurons is critical to elucidate the mechanisms of virus neuroinvasion. By using recombinant viruses expressing glycoprotein B (gB) tagged with green fluorescent protein (GFP), the subcellular localization of this envelope protein was visualized in infected hippocampal neurons in culture. Results obtained using a fully infectious recombinant virus containing GFP inserted into the ectodomain of gB support the view that capsids and gB are transported separately in neuron processes. Moreover, they show that during infection gB is sorted to the dendritic tree and the axons of polarized hippocampal neurons. However, GFP insertion into the cytoplasmic tail of gB impaired the maturation of the resulting fusion protein and caused its retention in the endoplasmic reticulum. The defective protein did not gain access to axons of infected neurons. These results suggest that the cytoplasmic tail of gB plays a role in maturation and transport and subsequently in axonal sorting in differentiated hippocampal neurons.

Engagement of Neurotropic Viruses in Fast Axonal Transport: Mechanisms, Potential Role of Host Kinases and Implications for Neuronal Dysfunction

Frontiers in Cellular Neuroscience, 2021

Much remains unknown about mechanisms sustaining the various stages in the life cycle of neurotropic viruses. An understanding of those mechanisms operating before their replication and propagation could advance the development of effective anti-viral strategies. Here, we review our current knowledge of strategies used by neurotropic viruses to undergo bidirectional movement along axons. We discuss how the invasion strategies used by specific viruses might influence their mode of interaction with selected components of the host’s fast axonal transport (FAT) machinery, including specialized membrane-bounded organelles and microtubule-based motor proteins. As part of this discussion, we provide a critical evaluation of various reported interactions among viral and motor proteins and highlight limitations of some in vitro approaches that led to their identification. Based on a large body of evidence documenting activation of host kinases by neurotropic viruses, and on recent work revea...

Infection of Primary Neurons Mediated by Nipah Virus Envelope Proteins: Role of Host Target Cells in Antiviral Action

Journal of Virology, 2011

We have previously described heterotypic peptides from parainfluenza virus that potently inhibit Nipah virus in vitro but are not efficacious in vivo. In contrast, our second-generation inhibitors, featuring a cholesterol moiety, are also efficacious in vivo. The difference between in vitro and in vivo results led us to investigate the basis for this discrepancy. Here, we compare the activities of the compounds in standard laboratory cells and in cells relevant to the natural tropism of Nipah virus, i.e., primary neurons, and show that while our first-generation inhibitors are poorly active in primary neurons, the cholesterol-conjugated compounds are highly potent. These results highlight the advantage of evaluating antiviral potency in cells relevant to natural host target tissue.

Virion-Incorporated Glycoprotein B Mediates Transneuronal Spread of Pseudorabies Virus

Journal of Virology, 2009

Transneuronal spread of pseudorabies virus (PRV) is a multistep process that requires several virally encoded proteins. Previous studies have shown that PRV glycoprotein B (gB), a component of the viral fusion machinery, is required for the transmission of infection to postsynaptic, second-order neurons. We sought to identify the gB-mediated step in viral transmission. We determined that gB is not required for the sorting of virions into axons of infected neurons, anterograde transport, or the release of virions from the axon. trans or cis expression of gB on the cell surface was not sufficient for transneuronal spread of the virus; instead, efficient incorporation of gB into virions was required. Additionally, neuron-to-cell spread of PRV most likely does not proceed through syncytial connections. We conclude that, upon gB-independent release of virions at the site of neuron-cell contacts, the virion-incorporated gB/gH/gL fusion complex mediates entry into the axonally contacted ce...

Axonal spread of neuroinvasive viral infections

Trends in Microbiology, 2015

Neuroinvasive viral infections invade the nervous system, often eliciting serious disease and death. Members of four viral families are both neuroinvasive and capable of transmitting progeny virions or virion components within long neuronal extensions known as axons. Axons provide physical structures to spread of viral infection within the host while avoiding extracellular immune responses. Technological advances in analysis of in vivo neural circuits, neuronal culturing, and live imaging of fluorescent fusion proteins have enabled an unprecedented view into the steps of virion assembly, transport, and egress involved in axonal spread. In this review, we will summarize the literature supporting anterograde (axon to cell) spread of viral infection, describe the various strategies of virion transport, and discuss the effects of spread on populations of neuroinvasive viruses.

CAR-Associated Vesicular Transport of an Adenovirus in Motor Neuron Axons

PLOS Pathogens, 2009

Axonal transport is responsible for the movement of signals and cargo between nerve termini and cell bodies. Pathogens also exploit this pathway to enter and exit the central nervous system. In this study, we characterised the binding, endocytosis and axonal transport of an adenovirus (CAV-2) that preferentially infects neurons. Using biochemical, cell biology, genetic, ultrastructural and live-cell imaging approaches, we show that interaction with the neuronal membrane correlates with coxsackievirus and adenovirus receptor (CAR) surface expression, followed by endocytosis involving clathrin. In axons, long-range CAV-2 motility was bidirectional with a bias for retrograde transport in nonacidic Rab7-positive organelles. Unexpectedly, we found that CAR was associated with CAV-2 vesicles that also transported cargo as functionally distinct as tetanus toxin, neurotrophins, and their receptors. These results suggest that a single axonal transport carrier is capable of transporting functionally distinct cargoes that target different membrane compartments in the soma. We propose that CAV-2 transport is dictated by an innate trafficking of CAR, suggesting an unsuspected function for this adhesion protein during neuronal homeostasis.