Antigenic analysis of potato virus A particles and coat protein (original) (raw)
Related papers
Journal of General Virology, 1996
The hypothesis that loss of aphid transmissibility of potyvirus mutants is due to non-retention of virions in the mouthparts was tested by feeding aphids through membranes on purified virions of aphid transmissible (AT or HAT) and non-aphid-transmissible (NAT) tobacco vein mottling virus (TVMV) or tobacco etch virus (TEV), in the presence of functional [potato virus Y (PVY) HC or TVMV HC] or non-functional (PVC HC) helper component (HC). TVMV virions were detected, by electron microscopic examination of immunogoldlabelled thin sections, in the food canal or cibarium of 57 % of 28 aphids fed on the transmissible combination of TVMV-AT and functional HC, while no virions were found in these structures in 25 aphids fed on the nontransmissible combinations: TVMV-NAT and PVY HC, or TVMV-AT and PVC HC. Autoradiography of intact stylets allowed the examination of much larger numbers of aphids, fed on 125I-labelled TEV; 48 % of 523 aphids fed on the TEV-HAT and PVY HC combination retained label in the stylets; this correlated well with the percentage transmission in bioassays. In contrast, in non-transmissible combinations, label was found in the stylets of 0.77% of 389 aphids fed on TEV-NAT and PVY HC, and 1-35 % of 223 aphids fed on TEV-HAT and PVC HC. No differences were found in the overall amount of label in the bodies of aphids fed on the transmissible and non-transmissible combinations.
Archives of Virology, 2005
The present study investigates the specificity of potyviruses for aphid species. Two potyviruses differing in their host range were used: Zucchini yellow mosaic virus (ZYMV) mainly infecting cucurbits and Turnip mosaic virus (TuMV) mainly infecting crucifers. Two sets of aphids species were used as vectors, one polyphagous (Myzus persicae and Aphis gossypii) and the other from crucifers (Brevicoryne brassicae and Lipaphis erysimi). Evidence is provided that the specificity between a vector and a potyvirus depends either on the affinity between the aphid species and the helper component (HC) protein used or on the affinity between the HC and the virions. The difference between the two potyviruses cannot be attributed to the DAG domain which is unaltered in both N termini of the CP. Therefore, a ZYMV full length clone served to exchange a fragment encoding for the N terminus of the ZYMV CP by that of TuMV. This partial exchange in the ZYMV CP, allowed the TuMV HC to transmit the chimeric virus but not the wild type ZYMV. The significance of the N terminus context of the CP in the specificity for the HC is discussed.
Journal of General Virology, 1996
A poorly aphid-transmissible potato virus Y (PVY-PAT) variant emerged after several cycles of mechanical transmission of an initially aphid-transmissible (AT) isolate. Sequence analysis of the N-terminal region of the helper component-proteinase (HC-Pro) gene revealed a Lys to Glu change at a position previously found to abolish the HC-Pro aphid transmission activity in several potyviruses. Two cycles of aphid transmission allowed the virus population to evolve towards an AT form (PVY-ATnew) where a Glu to Lys change was observed. PVY-PAT produced lower amounts of coat protein and the accumulation of its HC-Pro in infected plants decreased from 7 to 28 days post-inoculation, as compared to PVY-ATnew. RT-PCR and restriction analysis showed that the two virus populations co-existed in the PVY-AT isolate and that the AT form was counter-selected during mechanical transmission. These observations suggest that the Lys to Glu substitution leads to decreased stability of HC-Pro resulting in poor transmissions by aphids, and further strengthen the idea that HC-Pro is involved in the accumulation of potyvirus in infected plants.
Journal of General Virology, 1995
The nature of the amino acids in the N-terminal 'DAGX' motif of the coat protein of tobacco vein mottling virus (TVMV) that have a direct effect on aphid transmissibility of the virion were further defined by sitedirected mutagenesis. In the first position of the DAGX motif, Asp or Asn are required for aphid transmissibility. In the second position, the nonpolar residue Ala, but not the nonpolar Gly or Val or the polar Thr and Ser, is compatible with transmissibility. In the third position, the small, neutral, nonpolar Gly appears to be critical; even substitution of Ala, with a minimal side-chain, drastically reduces transmissibility. Although the amino acid following the DAG sequence is not highly conserved among potyviruses, the presence of an acidic Glu or Asp residue at this position in the TVMV coat protein drastically reduces or abolishes aphid transmissibility. An attempt was made to test the hypothesis that trypsin cleavage of the N terminus is involved in the aphid inoculation process by destroying a trypsin cleavage site downstream from the DAGX motif. While the predicted decrease in transmission occurred from infected plants, there was no effect on the transmission of purified virus.
The Journal of general virology, 2000
The genes encoding the helper component (HC) proteins of two strains of Potato virus Y (PVY) were cloned and the proteins expressed from a vector derived from Potato virus X (PVX). The expressed HC contained six N-terminal histidine residues to facilitate purification by metal affinity chromatography. Approximately 2-4 microg/g of purified HC was obtained from leaves of Nicotiana benthamiana plants systemically infected by recombinant PVX. Preparations of the HC protein derived from PVY ordinary strain (PVY(o)) assisted aphid transmission of purified particles of PVY(o) and PVY strain C (PVY(c); a naturally occurring non-aphid transmissible strain of PVY which contains a defective HC), as well as Potato aucuba mosaic virus. The HC derived from PVY(c) contained the Glu-Ile-Thr-Cys (EITC) motif, and mutation of Glu (E) to Lys (K) enabled the mutant PVX-expressed preparations to assist virus transmission by aphids. Expression of HC protein from the PVX vector produced biologically acti...
Virology, 1997
Specific binding between the coat protein (CP) and the helper component (HC) of the tobacco vein mottling potyvirus (TVMV) was characterized using a protein blotting-overlay protocol. In this in vitro assay, HC interacted with either virions or CP monomers originating from the aphid-transmissible TVMV-AT but not from the non-aphid-transmissible TVMV-NAT. There was a strong correlation between the aphid transmissibility of a series of TVMV variants having mutations in the DAG motif of the CP and their ability to bind HC. Expression of TVMV CP derivatives in bacteria allowed a precise determination of the minimum domain mediating HC binding. This domain is composed of seven amino acids, including the DAG motif (DTVDAGK), located in the N-terminus of the TVMV CP at amino acid positions 2 to 8. ᭧ 1997 Academic Press 1 Permanent address: Station de Recherches de Pathologie Comany other motif) of the CP of potyviruses. paré e,
Virus Research, 2009
Chenopodium-systemic (PVS-CS) were analyzed. Although the TGB sequences did not reveal any specific difference within the 7K protein, some specific differences within the 25K and 12K ORFs were found. In order to investigate a possible functional divergence of PVS-O and PVS-CS TGB variants, these genes were propagated in chimeric Potato virus X (PVX). Both PVS TGB variants partly complemented PVX TGB in Nicotiana benthamiana. The recombinant viruses multiplied to lower titer than the wildtype PVX in N. benthamiana showed attenuated symptoms. Whereas the recombinant PVX variants were also propagated systemically in Nicotiana glutinosa, Celosia argentea, Nicotiana occidentalis and chimeric PVX bearing TGB from PVS-O in Solanum lycopersicum, neither were propagated systemically in Chenopodium quinoa nor in Nicotiana tabacum cv. Samsun nn and the PVX-resistant Solanum tuberosum cv. Szignal.
Transmission of plant viruses by aphid vectors
Molecular Plant Pathology, 2004
Aphids are the most common vector of plant viruses. Mechanisms of transmission are best understood by considering the routes of virus movement in the aphid (circulative versus noncirculative) and the sites of retention or target tissues (e.g. stylets, salivary glands). Capsid proteins are a primary, but not necessarily sole, viral determinant of transmission. A summary is presented of the taxonomic affiliations of the aphid transmitted viruses, including 8 families, 18 genera, and taxonomically unassigned viruses.