GGA and Arf Proteins Modulate Retrovirus Assembly and Release (original) (raw)
Related papers
mBio, 2014
The matrix (MA) domain of HIV-1 mediates proper Gag localization and membrane binding via interaction with a plasma-membrane (PM)-specific acidic phospholipid, phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P 2 ]. HIV-1 MA also interacts with RNA, which prevents Gag from binding to membranes containing phosphatidylserine, a prevalent cellular acidic phospholipid. These results suggest that the MA-bound RNA promotes PM-specific localization of HIV-1 Gag by blocking nonspecific interactions with cellular membranes that do not contain PI(4,5)P 2 . To examine whether PI(4,5)P 2 dependence and RNA-mediated inhibition collectively determine MA phenotypes across a broad range of retroviruses and elucidate the significance of their interrelationships, we compared a panel of Gag-leucine zipper constructs (GagLZ) containing MA of different retroviruses. We found that in vitro membrane binding of GagLZ via HIV-1 MA and Rous sarcoma virus (RSV) MA is both PI(4,5)P 2 dependent and susceptible to RNA-mediated inhibition. The PM-specific localization and virus-like particle (VLP) release of these GagLZ proteins are severely impaired by overexpression of a PI(4,5)P 2 -depleting enzyme, polyphosphoinositide 5-phosphatase IV (5ptaseIV). In contrast, membrane binding of GagLZ constructs that contain human T-lymphotropic virus type 1 (HTLV-1) MA, murine leukemia virus (MLV) MA, and human endogenous retrovirus K (HERV-K) MA is PI(4,5)P 2 independent and not blocked by RNA. The PM localization and VLP release of these GagLZ chimeras were much less sensitive to 5ptaseIV expression. Notably, single amino acid substitutions that confer a large basic patch rendered HTLV-1 MA susceptible to the RNA-mediated block, suggesting that RNA readily blocks MA containing a large basic patch, such as HIV-1 and RSV MA. Further analyses of these MA mutants suggest a possibility that HIV-1 and RSV MA acquired PI(4,5)P 2 dependence to alleviate the membrane binding block imposed by RNA.
Identification of a Cytoplasmic Targeting/Retention Signal in a Retroviral Gag Polyprotein
1999
Retroviral capsid assembly can occur by either of two distinct morphogenic processes: in type C viruses, the capsid assembles and buds at the plasma membrane, while in type B and D viruses, the capsid assembles within the cytoplasm and is then transported to the plasma membrane for budding. We have previously reported that a single-amino-acid substitution of a tryptophan for an arginine in the matrix protein (MA) of Mason-Pfizer monkey virus (MPMV) converts its capsid assembly from that of a type D retrovirus to that of the type C viruses (S. S. Rhee and E. Hunter, Cell 63:77-86, 1990). Here we identify a region of 18 amino acids within the MA of MPMV that is responsible for type D-specific morphogenesis. Insertion of these 18 amino acids into the MA of type C Moloney murine leukemia virus causes it to assemble an immature capsid in the cytoplasm. Furthermore, fusion of the MPMV MA to the green fluorescent protein resulted in altered intracellular targeting and a punctate accumulation of the fusion protein in the cytoplasm. These 18 amino acids, which are necessary and sufficient to target retroviral Gag polyproteins to defined sites in the cytoplasm, appear to define a novel mammalian cytoplasmic targeting/retention signal.
Journal of Virology, 2005
Foamy viruses (FV) are unusual among retroviruses since they require both Gag and Env structural proteins for particle egress. Recently significant progress has been made towards the mechanistic understanding of the viral release process, in particular that of retroviruses, and the viral domains and cellular pathways involved. However little is currently known about domains of FV structural proteins and cellular proteins engaged in this process. By mutational analysis of sequence motifs in prototype FV (PFV) Gag, bearing homology to known late assembly (L) domains, a PSAP motif with L domain function that was functionally interchangeable by heterologous L domains was identified. In contrast the inactivation of a PPPI motif had no significant influence on PFV particle release, although mutant viral particles displayed reduced infectivity. Similarly mutation of an evolutionary conserved YXXL motif revealed no classical L-domain function but resulted in release of noninfectious viruslike particles. Biochemical and electron microscopy analysis demonstrated that these mutant particles incorporated all viral structural proteins but contained aberrantly capsid structures, suggesting a role in capsid assembly for this PFV Gag sequence motif. In line with the mutational analysis, overexpression of dominant negative (DN) mutants and wild-type TSG101 but not the DN mutant of AIP-1/ALIX reduced PFV particle release and infectivity. Furthermore, DN mutants of Vps4A, Vps4B, and CHMP3 inhibited PFV egress and infectivity. Taken together these results demonstrate that PFV, like other viruses, requires components of the vacuolar protein sorting (VPS) machinery for egress and enters the VPS pathway through interaction with TSG101.
2002
The nucleocapsid (NC) domain of retroviruses plays a critical role in specific viral RNA packaging and virus assembly. RNA is thought to facilitate viral particle assembly, but the results described here with NC mutants indicate that it also plays a critical role in particle integrity. We investigated the assembly and integrity of particles produced by the human immunodeficiency virus type 1 M1-2/BR mutant virus, in which 10 of the 13 positive residues of NC have been replaced with alanines and incorporation of viral genomic RNA is virtually abolished. We found that the mutations in the basic residues of NC did not disrupt Gag assembly at the cell membrane. The mutant Gag protein can assemble efficiently at the cell membrane, and viral proteins are detected outside the cell as efficiently as they are for the wild type. However, only ϳ10% of the Gag molecules present in the supernatant of this mutant sediment at the correct density for a retroviral particle. The reduction of positive charge in the NC basic domain of the M1-2/BR virus adversely affects both the specific and nonspecific RNA binding properties of NC, and thus the assembled Gag polyprotein does not bind significant amounts of viral or cellular RNA. We found a direct correlation between the percentage of Gag associated with sedimented particles and the amount of incorporated RNA. We conclude that RNA binding by Gag, whether the RNA is viral or not, is critical to retroviral particle integrity after cell membrane assembly and is less important for Gag-Gag interactions during particle assembly and release.
Journal of Virology, 2007
The major protein constituents of the filoviral envelope are the matrix protein VP40 and the surface transmembrane protein GP. While VP40 is recruited to the sites of budding via the late retrograde endosomal transport route, GP is suggested to be transported via the classical secretory pathway involving the endoplasmic reticulum, Golgi apparatus, and trans-Golgi network until it reaches the plasma membrane where most filoviral budding takes place. Since both transport routes target the plasma membrane, it was thought that GP and VP40 join there to form the viral envelope. However, it was recently shown that, upon coexpression of both proteins, GP is partially recruited into peripheral VP40-enriched multivesicular bodies, which contained markers of the late endosome. Accumulation of GP and VP40 in this compartment was presumed to play an important role in the formation of the filoviral envelope. Using a domain-swapping approach, we were able to show that the transmembrane domain of GP was essential and sufficient for (i) partial recruitment of chimeric glycoproteins into VP40-enriched multivesicular bodies and (ii) incorporation into virus-like particles (VLPs) that were released upon expression of VP40. Only those chimeric glycoproteins which were targeted to VP40-enriched endosomal multivesicular bodies were subsequently recruited into VLPs. These data show that the transmembrane domain of GP is critical for the mixing of VP40 and GP in multivesicular bodies and incorporation of GP into the viral envelope. Results further suggest that trapping of GP in the VP40-enriched late endosomal compartment is important for the formation of the viral envelope.
Journal of Virology, 2004
Glycoproteins derived from most retroviruses and from several families of enveloped viruses can form infectious pseudotypes with murine leukemia virus (MLV) and lentiviral core particles, like the MLV envelope glycoproteins (Env) that are incorporated on either virus type. However, coexpression of a given glycoprotein with heterologous core proteins does not always give rise to highly infectious viral particles, and restrictions on pseudotype formation have been reported. To understand the mechanisms that control the recruitment of viral surface glycoproteins on lentiviral and retroviral cores, we exploited the fact that the feline endogenous retrovirus RD114 glycoprotein does not efficiently pseudotype lentiviral cores derived from simian immunodeficiency virus, whereas it is readily incorporated onto MLV particles. Our results indicate that recruitment of glycoproteins by the MLV and lentiviral core proteins occurs in intracellular compartments and not at the cell surface. We found that Env and core protein colocalization in intracytoplasmic vesicles is required for pseudotype formation. By investigating MLV/RD114 Env chimeras, we show that signals in the cytoplasmic tail of either glycoprotein differentially influenced their intracellular localization; that of MLV allows endosomal localization and hence recruitment by both lentiviral and MLV cores. Furthermore, we found that upon membrane binding, MLV core proteins could relocalize Env glycoproteins in late endosomes and allow their incorporation on viral particles. Thus, intracellular colocalization, as well as interactions between Env and core proteins, may influence the recruitment of the glycoprotein onto viral particles and generate infectious pseudotyped viruses.
Journal of virology, 2002
The nucleocapsid (NC) domain of retroviruses plays a critical role in specific viral RNA packaging and virus assembly. RNA is thought to facilitate viral particle assembly, but the results described here with NC mutants indicate that it also plays a critical role in particle integrity. We investigated the assembly and integrity of particles produced by the human immunodeficiency virus type 1 M1-2/BR mutant virus, in which 10 of the 13 positive residues of NC have been replaced with alanines and incorporation of viral genomic RNA is virtually abolished. We found that the mutations in the basic residues of NC did not disrupt Gag assembly at the cell membrane. The mutant Gag protein can assemble efficiently at the cell membrane, and viral proteins are detected outside the cell as efficiently as they are for the wild type. However, only ϳ10% of the Gag molecules present in the supernatant of this mutant sediment at the correct density for a retroviral particle. The reduction of positive charge in the NC basic domain of the M1-2/BR virus adversely affects both the specific and nonspecific RNA binding properties of NC, and thus the assembled Gag polyprotein does not bind significant amounts of viral or cellular RNA. We found a direct correlation between the percentage of Gag associated with sedimented particles and the amount of incorporated RNA. We conclude that RNA binding by Gag, whether the RNA is viral or not, is critical to retroviral particle integrity after cell membrane assembly and is less important for Gag-Gag interactions during particle assembly and release.