Formation of planetary populations – III. Core composition and atmospheric evaporation (original) (raw)
Related papers
On the formation and chemical composition of super Earths
Monthly Notices of the Royal Astronomical Society
Super Earths are the largest population of exoplanets and are seen to exhibit a rich diversity of compositions as inferred through their mean densities. Here we present a model that combines equilibrium chemistry in evolving disks with core accretion that tracks materials accreted onto planets during their formation. In doing so, we aim to explain why super Earths form so frequently and how they acquire such a diverse range of compositions. A key feature of our model is disk inhomogeneities, or planet traps, that act as barriers to rapid type-I migration. The traps we include are the dead zone, which can be caused by either cosmic ray or X-ray ionization, the ice line, and the heat transition. We find that in disks with sufficiently long lifetimes (4 Myr), all traps produce Jovian planets. In these disks, planet formation in the heat transition and X-ray dead zone produces hot Jupiters while the ice line and cosmic ray dead zones produce Jupiters at roughly 1 AU. Super Earth formation takes place within short-lived disks (2 Myr), whereby the disks are photoevaporated while planets are in a slow phase of gas accretion. We find that super Earth compositions range from dry and rocky (< 6 % ice by mass) to those with substantial water contents (> 30 % ice by mass). The traps play a crucial role in our results, as they dictate where in the disk particular planets can accrete from, and what compositions they are able to acquire.
Connecting planet formation and astrochemistry
Astronomy and Astrophysics, 2019
To understand the role that planet formation history has on the observable atmospheric carbon-to-oxygen ratio (C/O) we have produced a population of astrochemically evolving protoplanetary disks. Based on the parameters used in a pre-computed population of growing planets, their combination allows us to trace the molecular abundances of the gas that is being collected into planetary atmospheres. We include atmospheric pollution of incoming (icy) planetesimals as well as the effect of refractory carbon erosion noted to exist in our own solar system. We find that the carbon and oxygen content of Neptune-mass planets are determined primarily through solid accretion and result in more oxygen-rich (by roughly two orders of magnitude) atmospheres than hot Jupiters, whose C/O are primarily determined by gas accretion. Generally we find a "main sequence" between the fraction of planetary mass accreted through solid accretion and the resulting atmospheric C/O; planets of higher solid accretion fraction have lower C/O. Hot Jupiters whose atmospheres have been chemically characterized agree well with our population of planets, and our results suggest that hot-Jupiter formation typically begins near the water ice line. Lower mass hot Neptunes are observed to be much more carbon rich (with 0.33 C/O 1) than is found in our models (C/O ∼ 10 −2), and suggest that some form of chemical processing may affect their observed C/O over the few billion years between formation and observation. Our population reproduces the general mass-metallicity trend of the solar system and qualitatively reproduces the C/O metallicity anti-correlation that has been inferred for the population of characterized exoplanetary atmospheres.
Theory of planet formation and comparison with observation
EPJ Web of Conferences, 2011
The planetary mass-radius diagram is an observational result of central importance to understand planet formation. We present an updated version of our planet formation model based on the core accretion paradigm which allows us to calculate planetary radii and luminosities during the entire formation and evolution of the planets. We first study with it the formation of Jupiter, and compare with previous works. Then we conduct planetary population synthesis calculations to obtain a synthetic mass-radius diagram which we compare with the observed one. Except for bloated Hot Jupiters which can be explained only with additional mechanisms related to their proximity to the star, we find a good agreement of the general shape of the observed and the synthetic M − R diagram. This shape can be understood with basic concepts of the core accretion model.
MASS-RADIUS RELATIONS AND CORE-ENVELOPE DECOMPOSITIONS OF SUPER-EARTHS AND SUB-NEPTUNES
Many exoplanets have been discovered with radii of 1–4 R ⊕ , between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are " sub-Neptunes " likely to have significant H 2 –He envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, H 2 –He envelope masses, and associated envelope entropies. For planets in the super-Earth/ sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both " Earth-like " rock-iron cores and pure ice cores, and find that the necessary gaseous envelope masses for this important sub-class of exoplanets must range very widely from zero to many Earth masses, even for a given core mass. This result bears importantly on exoplanet formation and envelope evaporation processes.
Terrestrial Planet Formation in Exoplanetary Systems
2008
Many giant exoplanets are thought to have formed in the outer regions of a protoplanetary disk, and to have then migrated close to the central star. Hence, it is uncertain whether terrestrial planets can grow and be retained in these `hot-Jupiter' systems. Previous speculations, based on the assumption that migrating giant planets will clear planet-forming material from their swept zone, have concluded that such systems should lack terrestrial planets. This thesis presents a succession of four planet formation models, of increasing sophistication, aimed at examining how an inner system of solid bodies, undergoing terrestrial planet formation, evolves under the inuence of a giant planet undergoing inward type II migration. Protoplanetary growth is handled by an N+N'-body code, capable of simulating the accretion of a two-phase protoplanetplanetesimal population, and tracking their volatiles content. Gas dynamics and related dissipative processes are calculated with a linked viscous gas disk algorithm capable of simulating: gas accretion onto the central star and photoevaporation; type II migration of the giant planet; type I migration of protoplanets; and the effect of gas drag on planetesimals. In all simulations, a large fraction of the inner system material survives the passage of the giant, either by accreting into massive planets shepherded inward of the giant (reminiscent of the short-period `hot-Earths' discovered recently), or by being scattered into external orbits. Typically, sufcient mass is scattered outward to provide for the eventual accretion of a set of terrestrial planets in external orbits. The results of this thesis lead to the prediction that hot-Jupiter systems are likely to harbor water-rich terrestrial planets in their habitable zones and hot-Earths may also be present. These planets may be detected by future planet search missions.
Formation of planetary populations − II. Effects of initial disc size and radial dust drift
Monthly Notices of the Royal Astronomical Society
Recent ALMA observations indicate that while a range of disc sizes exist, typical disc radii are small, and that radial dust drift affects the distribution of solids in discs. Here, we explore the consequences of these features in planet population synthesis models. A key feature of our model is planet traps – barriers to otherwise rapid type-I migration of forming planets – for which we include the ice line, heat transition, and outer edge of the dead zone. We find that the ice line plays a fundamental role in the formation of warm Jupiters. In particular, the ratio of super Earths to warm Jupiters formed at the ice line depends sensitively on the initial disc radius. Initial gas disc radii of ∼50 au results in the largest super Earth populations, while both larger and smaller disc sizes result in the ice line producing more gas giants near 1 au. This transition between typical planet class formed at the ice line at various disc radii confirms that planet formation is fundamentally...
The Astrophysical Journal, 2008
In a further development of a deterministic planet formation model (Ida & Lin), we consider the effect of type I migration of protoplanetary embryos due to their tidal interaction with their nascent disks. During the early phase of protostellar disks, although embryos rapidly emerge in regions interior to the ice line, uninhibited type I migration leads to their efficient self-clearing. But embryos continue to form from residual planetesimals, repeatedly migrate inward, and provide a main channel of heavy-element accretion onto their host stars. During the advanced stages of disk evolution (a few Myr), the gas surface density declines to values comparable to or smaller than that of the minimum mass nebula model, and type I migration is no longer effective for Mars-mass embryos. Over wide ranges of initial disk surface densities and type I migration efficiencies, the surviving population of embryos interior to the ice line has a total mass of several M È. With this reservoir, there is an adequate inventory of residual embryos to subsequently assemble into rocky planets similar to those around the Sun. However, the onset of efficient gas accretion requires the emergence and retention of cores more massive than a few M È prior to the severe depletion of the disk gas. The formation probability of gas giant planets and hence the predicted mass and semimajor axis distributions of extrasolar gas giants are sensitively determined by the strength of type I migration. We suggest that the distributions consistent with observations can be reproduced only if the actual type I migration timescale is at least an order of magnitude longer than that deduced from linear theories.
Formation of planetary populations – I. Metallicity and envelope opacity effects
Monthly Notices of the Royal Astronomical Society
We present a comprehensive body of simulations of the formation of exoplanetary populations that incorporate the role of planet traps in slowing planetary migration. The traps we include in our model are the water ice line, the disk heat transition, and the dead zone outer edge. We reduce our model parameter set to two physical parameters: the opacity of the accreting planetary atmospheres (κ env) and a measure of the efficiency of planetary accretion after gap opening (f max). We perform planet population synthesis calculations based on the initial observed distributions of host star and disk properties-their disk masses, lifetimes, and stellar metallicities. We find the frequency of giant planet formation scales with disk metallicity, in agreement with the observed Jovian planet frequency-metallicity relation. We consider both Xray and cosmic ray disk ionization models, whose differing ionization rates lead to different dead zone trap locations. In both cases, Jovian planets form in our model out to 2-3 AU, with a distribution at smaller radii dependent on the disk ionization source and the setting of envelope opacity. We find that low values of κ env (0.001-0.002 cm 2 g −1) and X-ray disk ionization are necessary to obtain a separation between hot Jupiters near 0.1 AU, and warm Jupiters outside 0.6 AU, a feature present in the data. Our model also produces a large number of super Earths, but the majority are outside of 2 AU. As our model assumes a constant dust to gas ratio, we suggest that radial dust evolution must be taken into account to reproduce the observed super Earth population.
Astronomy & Astrophysics, 2015
Context. Direct observations of gaseous exoplanets reveal that their gas envelope has a higher C/O ratio than that of the host star (e.g., Wasp 12-b). This has been explained by considering that the gas phase of the disc could be inhomogeneous, exceeding the stellar C/O ratio in regions where these planets formed; but few studies have considered the drift of the gas and planet migration. Aims. We aim to derive the gas composition in planets through planet formation to evaluate if the formation of giant planets with an enriched C/O ratio is possible. The study focusses on the effects of different processes on the C/O ratio, such as the disc evolution, the drift of gas, and planet migration. Methods. We used our previous models for computing the chemical composition, together with a planet formation model, to which we added the composition and drift of the gas phase of the disc, which is composed of the main volatile species H2O, CO, CO2, NH3, N2, CH3OH, CH4, and H2S, H2 and He. The study focusses on the region where ice lines are present and influence the C/O ratio of the planets. Results. Modelling shows that the condensation of volatile species as a function of radial distance allows for C/O enrichment in specific parts of the protoplanetary disc of up to four times the solar value. This leads to the formation of planets that can be enriched in C/O in their envelope up to three times the solar value. Planet migration, gas phase evolution and disc irradiation enables the evolution of the initial C/O ratio that decreases in the outer part of the disc and increases in the inner part of the disc. The total C/O ratio of the planets is governed by the contribution of ices accreted, suggesting that high C/O ratios measured in planetary atmospheres are indicative of a lack of exchange of material between the core of a planet and its envelope or an observational bias. It also suggests that the observed C/O ratio is not representative of the total C/O ratio of the planet.