Optimizing production from water drive gas reservoirs based on desirability concept (original) (raw)
Journal of Natural Gas Science and Engineering, 2014
Abstract
ABSTRACT There are various factors which determine the optimization and economic production from water drive gas reservoirs. These factors play an important role in designing an effective reservoir development plan. The present study, in the first step, investigates the relation between recovery factor, volumetric sweep efficiency and cumulative water production with six different engineering and geologic factors using design of experiments (DOE) and response surface methodology (RSM). Next, all derived response functions are optimized simultaneously based on the concept of desirability. In this manner, part of water drive gas reservoirs is simulated using Box–Behnken design. Important factors that have been studied include reservoir horizontal permeability (Kh), permeability anisotropy (Kv/Kh), aquifer size (Vaq), gas production rate (Qg), perforated thickness (Hp) and tubing head pressure (THP). The results indicate that by combining various levels of factors and considering relative importance of each response function, optimized conditions could be raised in order to maximizing recovery factor, volumetric sweep efficiency and minimizing cumulative water production. Also high rates of gas production result poor volumetric sweep efficiency and early water breakthrough, hence ultimate recovery factor decreases by 3.2–8.4%.
behzad rostami hasn't uploaded this paper.
Create a free Academia account to let behzad know you want this paper to be uploaded.
Ask for this paper to be uploaded.