Comparison of Ordinary, Weighted, and Generalized Least-Squares Straight-Line Calibrations for LC-MS-MS, GC-MS, HPLC, GC, and Enzymatic Assay (original) (raw)
Abstract
The impact of experimental errors in one or both variables on the use of linear least-squares was investigated for method calibrations (response = intercept plus slope times concentration, or equivalently, Y = a1 + a2X ) frequently used in analytical toxicology. In ...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (33)
- A.H. Kalantar. Slopes of straight-lines when neither axis is error- free. J. Chem. Educ. 64:28 (1987).
- J. Tellinghuisen. On the least-squares fitting of correlated data: a priori vs. a posteriori weighting. J. Mol. Spectrosc. 179(2): 299- 309 (1996).
- P.R. Bevington and D.K. Robinson. Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. McGraw-Hill, New York, NY, 1992.
- D.P. Chong. Comment on "Linear least-squares fits with errors in both coordinates". Am. J. Physics 59:472-474 (1991).
- J.R. Macdonald and W.J. Thompson. Least-squares fitting when both variables contain errors: pitfalls and possibilities. Am. J. Physics 60(1): 66-73 (1992).
- J.H. Williamson. Least-squares fitting of a straight-line. Can. J. Phys. 46:1845-1847 (1968).
- P.J. Ogren and J.R. Norton. Applying a simple linear least-squares algorithm to data with uncertainties in both variables. J. Chem. Educ. 69:A130-A131 (1992).
- D.R Shoemaker and C.W. Garland. Experiments in Physical Chemistry, 2nd ed. McGraw-Hill, New York, NY, 1967.
- Z.B. Alfassi, Z. Boger, and Y. Ronen. Statistical Treatment of An- alytical Data. CRC Press, Boca Raton, FL, 2005.
- R. Dams, C.M. Murphy, R.E. Cho, W.E. Lambert, A.P. De Leen- heer, and M.A. Huestis. LC-atmospheric pressure chemical ion- ization-MS-MS analysis of multiple illicit drugs, methadone, and their metabolites in oral fluid following protein precipitation. Anal. Chem. 75:798-804 (2003).
- R. Dams, C.M. Murphy, W.E. Lambert, and M.A. Huestis. Urine drug testing for opiods, cocaine and metabolites by direct injec- tion liquid chromatography-tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17:1665-1670 (2003).
- D.C. Fenimore, C.M. Davis, J.H. Whitford, and C.A. Harrington. Vapor phase silylation of laboratory glassware. Anal. Chem. 48: 2289-2290 (1976).
- J.W. Soper, D. Canfield, T. Kupiec, and L. Busch. A GC-MS screening method for 6-monoacetylmorphine and related opiates. Proceedings of the American Academy of Forensic Sciences, Vol. 1., 1995, pp 207-208.
- M.G. Homing, P. Gregory, J. Nowlin, M. Stafford, K. Ler- tratanangkoon, C. Butler, W.G. Stillwell, and R.M. Hill. Isolation of drugs and drug metabolites from biological fluids by use of salt- solvent pairs. Clin. Chem. 20:282-287 (1974).
- D.W. Hill and A.J. Kind. Reverse-phase solvent-gradient HPLC re- tention indexes of drugs. J. Anal. Toxicol. | 8:233-242 (1994).
- D.S. Christmore, R.S. Kelly, and L.A. Doshier. Improved recovery and stability of ethanol in automated headspace analysis. J. Forensic Sci. 29:1038-1044 (1984).
- K.N. Marsh and A.E. Richards. Excess volumes for ethanol + water mixtures at 10-K intervals from 278.15 to 338.15K. Aust. J. Chem. 33:2121-2135 (1980).
- J.K. Taylor. Quality Assurance of Chemical Measurements. Lewis Publishers, Boca Raton, FL, 1987.
- J.C. Miller and J.N. Miller. Statistics for Analytical Chemistry, 4th ed. Ellis Horwood, Prentice Hall, New York, NY, 2000.
- J. Tellinghuisen. Weighted least-squares in calibration: what dif- ference does it make? Analyst 132:536-543 (2007).
- F.J. del Rio Bocio, J. Riu, R. Boqu~, and F.X. Rius. Limits of de- tection in linear regression with errors in the concentration. J. Chemom. 17:413-421 (2003). [Note: this reference denotes the GLS approach as bivariate least squares (BLS) re- gression.]
- W.H. Press and S.A. Teukolsky. Fitting straight line data with errors in both coordinate s . Computers Physics 6:274-276 (1992).
- W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Nu- merical Recipes in Fortran 77: The Art of Scientific Computing, Vol. 1,2nd ed. Cambridge, U.K., 1992, p 660.
- S.L. Meyer. Data Analysis for Scientists and Engineers. John Wiley & Sons, New York, NY, 1975, pp 311-339, 359-386.
- D. York. Least-squares fitting of a straight line. Can. J. Physics 44: 1079-1086 (1966).
- R.G.J. Miller. Simultaneous Statistical Inference, 2nd ed. Springer- Verlag, New York, NY, 1981, pp 48-55.
- D.G. Mitchell, W.N. Mills, J.S. Garden, and M. Zdeb. Multiple- curve procedure for improving precision with calibration-curve- based analyses. Anal. Chem. 49:1655-1660 (1977).
- J.S. Garden, D.G. Mitchell, and W.N. Mills, Nonconstant variance regression techniques for calibration-curve-based analysis. Anal. Chem. 52:2310-2315 (1980).
- K. Danzer and L.A. Currie. Guidelines for calibration in analytical chemistry. Pure Appl. Chem. 70' 993-1014 (1998).
- D.C. Harris. Quantitative Chemical Analysis, 6th ed. W.H. Freeman, New York, NY, 2003.
- C. Slater. Error analysis using the variance-covariance matrix. J. Chem. Educ. 77:1239-1243 (2000).
- J.P. Hessler, D.H. Current, and P.J. Ogren. A new scheme for calculating weights and describing correlations in nonlinear least- squares fits. Computers Physics 10:186-199 (1996).
- W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in Fortran 77: The Art of Scientific Com- puting, Vol. 1,2nd ed. Cambridge, U.K., 1992, p 279.