Comparison of Ordinary, Weighted, and Generalized Least-Squares Straight-Line Calibrations for LC-MS-MS, GC-MS, HPLC, GC, and Enzymatic Assay (original) (raw)

Abstract

The impact of experimental errors in one or both variables on the use of linear least-squares was investigated for method calibrations (response = intercept plus slope times concentration, or equivalently, Y = a1 + a2X ) frequently used in analytical toxicology. In ...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (33)

  1. A.H. Kalantar. Slopes of straight-lines when neither axis is error- free. J. Chem. Educ. 64:28 (1987).
  2. J. Tellinghuisen. On the least-squares fitting of correlated data: a priori vs. a posteriori weighting. J. Mol. Spectrosc. 179(2): 299- 309 (1996).
  3. P.R. Bevington and D.K. Robinson. Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. McGraw-Hill, New York, NY, 1992.
  4. D.P. Chong. Comment on "Linear least-squares fits with errors in both coordinates". Am. J. Physics 59:472-474 (1991).
  5. J.R. Macdonald and W.J. Thompson. Least-squares fitting when both variables contain errors: pitfalls and possibilities. Am. J. Physics 60(1): 66-73 (1992).
  6. J.H. Williamson. Least-squares fitting of a straight-line. Can. J. Phys. 46:1845-1847 (1968).
  7. P.J. Ogren and J.R. Norton. Applying a simple linear least-squares algorithm to data with uncertainties in both variables. J. Chem. Educ. 69:A130-A131 (1992).
  8. D.R Shoemaker and C.W. Garland. Experiments in Physical Chemistry, 2nd ed. McGraw-Hill, New York, NY, 1967.
  9. Z.B. Alfassi, Z. Boger, and Y. Ronen. Statistical Treatment of An- alytical Data. CRC Press, Boca Raton, FL, 2005.
  10. R. Dams, C.M. Murphy, R.E. Cho, W.E. Lambert, A.P. De Leen- heer, and M.A. Huestis. LC-atmospheric pressure chemical ion- ization-MS-MS analysis of multiple illicit drugs, methadone, and their metabolites in oral fluid following protein precipitation. Anal. Chem. 75:798-804 (2003).
  11. R. Dams, C.M. Murphy, W.E. Lambert, and M.A. Huestis. Urine drug testing for opiods, cocaine and metabolites by direct injec- tion liquid chromatography-tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17:1665-1670 (2003).
  12. D.C. Fenimore, C.M. Davis, J.H. Whitford, and C.A. Harrington. Vapor phase silylation of laboratory glassware. Anal. Chem. 48: 2289-2290 (1976).
  13. J.W. Soper, D. Canfield, T. Kupiec, and L. Busch. A GC-MS screening method for 6-monoacetylmorphine and related opiates. Proceedings of the American Academy of Forensic Sciences, Vol. 1., 1995, pp 207-208.
  14. M.G. Homing, P. Gregory, J. Nowlin, M. Stafford, K. Ler- tratanangkoon, C. Butler, W.G. Stillwell, and R.M. Hill. Isolation of drugs and drug metabolites from biological fluids by use of salt- solvent pairs. Clin. Chem. 20:282-287 (1974).
  15. D.W. Hill and A.J. Kind. Reverse-phase solvent-gradient HPLC re- tention indexes of drugs. J. Anal. Toxicol. | 8:233-242 (1994).
  16. D.S. Christmore, R.S. Kelly, and L.A. Doshier. Improved recovery and stability of ethanol in automated headspace analysis. J. Forensic Sci. 29:1038-1044 (1984).
  17. K.N. Marsh and A.E. Richards. Excess volumes for ethanol + water mixtures at 10-K intervals from 278.15 to 338.15K. Aust. J. Chem. 33:2121-2135 (1980).
  18. J.K. Taylor. Quality Assurance of Chemical Measurements. Lewis Publishers, Boca Raton, FL, 1987.
  19. J.C. Miller and J.N. Miller. Statistics for Analytical Chemistry, 4th ed. Ellis Horwood, Prentice Hall, New York, NY, 2000.
  20. J. Tellinghuisen. Weighted least-squares in calibration: what dif- ference does it make? Analyst 132:536-543 (2007).
  21. F.J. del Rio Bocio, J. Riu, R. Boqu~, and F.X. Rius. Limits of de- tection in linear regression with errors in the concentration. J. Chemom. 17:413-421 (2003). [Note: this reference denotes the GLS approach as bivariate least squares (BLS) re- gression.]
  22. W.H. Press and S.A. Teukolsky. Fitting straight line data with errors in both coordinate s . Computers Physics 6:274-276 (1992).
  23. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Nu- merical Recipes in Fortran 77: The Art of Scientific Computing, Vol. 1,2nd ed. Cambridge, U.K., 1992, p 660.
  24. S.L. Meyer. Data Analysis for Scientists and Engineers. John Wiley & Sons, New York, NY, 1975, pp 311-339, 359-386.
  25. D. York. Least-squares fitting of a straight line. Can. J. Physics 44: 1079-1086 (1966).
  26. R.G.J. Miller. Simultaneous Statistical Inference, 2nd ed. Springer- Verlag, New York, NY, 1981, pp 48-55.
  27. D.G. Mitchell, W.N. Mills, J.S. Garden, and M. Zdeb. Multiple- curve procedure for improving precision with calibration-curve- based analyses. Anal. Chem. 49:1655-1660 (1977).
  28. J.S. Garden, D.G. Mitchell, and W.N. Mills, Nonconstant variance regression techniques for calibration-curve-based analysis. Anal. Chem. 52:2310-2315 (1980).
  29. K. Danzer and L.A. Currie. Guidelines for calibration in analytical chemistry. Pure Appl. Chem. 70' 993-1014 (1998).
  30. D.C. Harris. Quantitative Chemical Analysis, 6th ed. W.H. Freeman, New York, NY, 2003.
  31. C. Slater. Error analysis using the variance-covariance matrix. J. Chem. Educ. 77:1239-1243 (2000).
  32. J.P. Hessler, D.H. Current, and P.J. Ogren. A new scheme for calculating weights and describing correlations in nonlinear least- squares fits. Computers Physics 10:186-199 (1996).
  33. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in Fortran 77: The Art of Scientific Com- puting, Vol. 1,2nd ed. Cambridge, U.K., 1992, p 279.