Role of the double-strand break repair pathway in the maintenance of genomic stability (original) (raw)

Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining

American journal of cancer research, 2012

A DNA double strand break (DSB) is a highly toxic lesion, which can generate genetic instability and profound genome rearrangements. However, DSBs are required to generate diversity during physiological processes such as meiosis or the establishment of the immune repertoire. Thus, the precise regulation of a complex network of processes is necessary for the maintenance of genomic stability, allowing genetic diversity but protecting against genetic instability and its consequences on oncogenesis. Two main strategies are employed for DSB repair: homologous recombination (HR) and non-homologous end-joining (NHEJ). HR is initiated by single-stranded DNA (ssDNA) resection and requires sequence homology with an intact partner, while NHEJ requires neither resection at initiation nor a homologous partner. Thus, resection is an pivotal step at DSB repair initiation, driving the choice of the DSB repair pathway employed. However, an alternative end-joining (A-EJ) pathway, which is highly muta...

Coupled Homologous and Nonhomologous Repair of a Double-Strand Break Preserves Genomic Integrity in Mammalian Cells

Molecular and Cellular Biology, 2000

DNA double-strand breaks (DSBs) may be caused by normal metabolic processes or exogenous DNA damaging agents and can promote chromosomal rearrangements, including translocations, deletions, or chromosome loss. In mammalian cells, both homologous recombination and nonhomologous end joining (NHEJ) are important DSB repair pathways for the maintenance of genomic stability. Using a mouse embryonic stem cell system, we previously demonstrated that a DSB in one chromosome can be repaired by recombination with a homologous sequence on a heterologous chromosome, without any evidence of genome rearrangements (C. Richardson, M. E. Moynahan, and M. Jasin, Genes Dev., 12:3831-3842, 1998). To determine if genomic integrity would be compromised if homology were constrained, we have now examined interchromosomal recombination between truncated but overlapping gene sequences. Despite these constraints, recombinants were readily recovered when a DSB was introduced into one of the sequences. The overwhelming majority of recombinants showed no evidence of chromosomal rearrangements. Instead, events were initiated by homologous invasion of one chromosome end and completed by NHEJ to the other chromosome end, which remained highly preserved throughout the process. Thus, genomic integrity was maintained by a coupling of homologous and nonhomologous repair pathways. Interestingly, the recombination frequency, although not the structure of the recombinant repair products, was sensitive to the relative orientation of the gene sequences on the interacting chromosomes.

Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes

DNA double-strand breaks arise accidentally upon exposure of DNA to radiation and chemicals or result from faulty DNA metabolic processes. DNA breaks can also be introduced in a programmed manner, such as during the maturation of the immune system, meiosis, or cancer chemo-or radiotherapy. Cells have developed a variety of repair pathways, which are fine-tuned to the specific needs of a cell. Accordingly, vegetative cells employ mechanisms that restore the integrity of broken DNA with the highest efficiency at the lowest cost of mutagenesis. In contrast, meiotic cells or developing lymphocytes exploit DNA breakage to generate diversity. Here, we review the main pathways of eukaryotic DNA double-strand break repair with the focus on homologous recombination and its various subpathways. We highlight the differences between homologous recombination and end-joining mechanisms including non-homologous end-joining and microhomology-mediated end-joining and offer insights into how these pathways are regulated. Finally, we introduce noncanonical functions of the recombination proteins, in particular during DNA replication stress.

Differential usage of non-homologous end-joining and homologous recombination in double strand break repair

DNA Repair, 2006

DSB HR NHEJ Ku70 DT40 a b s t r a c t Repair of DNA double strand breaks (DSBs) plays a critical role in the maintenance of the genome. DSB arise frequently as a consequence of replication fork stalling and also due to the attack of exogenous agents. Repair of broken DNA is essential for survival. Two major pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to deal with these lesions, and are conserved from yeast to vertebrates. Despite the conservation of these pathways, their relative contribution to DSB repair varies greatly between these two species. HR plays a dominant role in any DSB repair in yeast, whereas NHEJ significantly contributes to DSB repair in vertebrates. This active NHEJ requires a regulatory mechanism to choose HR or NHEJ in vertebrate cells. In this review, we illustrate how HR and NHEJ are differentially regulated depending on the phase of cell cycle and on the nature of the DSB.

DNA double strand break repair via non-homologous end-joining

Translational cancer research, 2013

DNA double-stranded breaks (DSB) are among the most dangerous forms of DNA damage. Unrepaired DSBs results in cells undergoing apoptosis or senescence whereas mis-processing of DSBs can lead to genomic instability and carcinogenesis. One important pathway in eukaryotic cells responsible for the repair of DSBs is non-homologous end-joining (NHEJ). In this review we will discuss the interesting new insights into the mechanism of the NHEJ pathway and the proteins which mediate this repair process. Furthermore, the general role of NHEJ in promoting genomic stability will be discussed.

The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway

Annual Review of Biochemistry, 2010

Double-strand DNA breaks are common events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination (HR) and nonhomologous DNA end joining (NHEJ). The various causes of double-strand breaks (DSBs) result in a diverse chemistry of DNA ends that must be repaired. Across NHEJ evolution, the enzymes of the NHEJ pathway exhibit a remarkable degree of structural tolerance in the range of DNA end substrate configurations upon which they can act. In vertebrate cells, the nuclease, DNA polymerases, and ligase of NHEJ are the most mechanistically flexible and multifunctional enzymes in each of their classes. Unlike repair pathways for more defined lesions, NHEJ repair enzymes act iteratively, act in any order, and can function independently of one another at each of the two DNA ends being joined. NHEJ is critical not only for the repair of pathologic DSBs as in chromosomal translocations, but also for the repair of physiologic DSBs created during vari...

Pathways of DNA double-strand break repair and their impact on the prevention and formation of chromosomal aberrations

Cytogenetic and Genome Research, 2004

DNA double-strand breaks (DSB) are considered the critical primary lesion in the formation of chromosomal aberrations (CA). DSB occur spontaneously during the cell cycle and are induced by a variety of exogenous agents such as ionising radiation. To combat this potentially lethal damage, two related repair pathways, namely homologous recombination (HR) and non-homologous DNA end joining (NHEJ), have evolved, both of which are well conserved from bacteria to humans. Depending on the pathway used, the underlying mechanisms are capable of eliminating DSB without alterations to the original genomic sequence (error-free) but also may induce small scale mutations (base pair substitutions, deletions and/or insertions) and gross CA (error-prone). In this paper, we review the major pathways of DSB-repair, the proteins involved therein and their impact on the prevention of CA formation and carcinogenesis.

A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair

Genes & Development, 2009

A DNA double-strand break (DSB) is repaired by gene conversion (GC) if both ends of the DSB share homology with an intact DNA sequence. However, if homology is limited to only one of the DSB ends, repair occurs by break-induced replication (BIR). It is not known how the homology status of the DSB ends is first assessed and what other parameters govern the choice between these repair pathways. Our data suggest that a ''recombination execution checkpoint'' (REC) regulates the choice of the homologous recombination pathway employed to repair a given DSB. This choice is made prior to the initiation of DNA synthesis, and is dependent on the relative position and orientation of the homologous sequences used for repair. The RecQ family helicase Sgs1 plays a key role in regulating the choice of the recombination pathway. Surprisingly, break repair and gap repair are fundamentally different processes, both kinetically and genetically, as Pol32 is required only for gap repair. We propose that the REC may have evolved to preserve genome integrity by promoting conservative repair, especially when a DSB occurs within a repeated sequence.

Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations

Mutagenesis, 2000

DNA double-strand breaks (DSB) are considered to be critical primary lesions in the formation of chromosomal aberrations. DSB may be induced by exogenous agents, such as ionizing radiation, but also occur spontaneously during cellular processes at quite significant frequencies. To repair this potentially lethal damage, eukaryotic cells have evolved a variety of repair pathways related to homologous and illegitimate recombination, also called non-homologous DNA end joining, which may induce small scale mutations and chromosomal aberrations. In this paper we review the major cellular sources of spontaneous DSB and the different homologous and illegitimate recombination repair pathways, with particular focus on their potential to induce chromosomal aberrations.

Non-homologous DNA end joining and alternative pathways to double-strand break repair

Nature Reviews Molecular Cell Biology, 2017

DNA double-strand breaks (DSBs) are the most dangerous type of DNA damage because they can result in the loss of large chromosomal regions. In all mammalian cells, DSBs that occur throughout the cell cycle are repaired predominantly by the non-homologous DNA end joining (NHEJ) pathway. Defects in NHEJ result in sensitivity to ionizing radiation and the ablation of lymphocytes. The NHEJ pathway utilizes proteins that recognize, resect, polymerize and ligate the DNA ends in a flexible manner. This flexibility permits NHEJ to function on a wide range of DNA-end configurations, with the resulting repaired DNA junctions often containing mutations. In this Review, we discuss the most recent findings regarding the relative involvement of the different NHEJ proteins in the repair of various DNA-end configurations. We also discuss the shunting of DNA-end repair to the auxiliary pathways of alternative end joining (a-EJ) or single-strand annealing (SSA) and the relevance of these different pathways to human disease. In dividing mammalian cells, there are an estimated ten DNA double-strand breaks (DSBs) per day per cell 1-3. These pathological DSBs arise from ionizing radiation, reactive oxygen species, DNA replication errors and inadvertent cleavage by nuclear enzymes. Many of these pathological breaks, as well as the physiological (regulated) breaks that occur during V(D)J recombination and immunoglobulin heavy chain class switch recombination, require end processing by nucleases and DNA polymerases to repair the DNA (FIG. 1). In nonhomologous DNA end joining (NHEJ), the DSB is first recognized by the Ku70-Ku80 hetero dimer (Ku), which acts as a 'tool belt' or loading protein to which other NHEJ proteins can be recruited as needed to promote the joining of DNA ends. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has a high affinity for Ku-DNA ends and, together with Ku, forms the DNA-PK complex 4 (FIG. 2a).