Ju n 20 06 Virtual Braids and the L – Move (original) (raw)

Virtual Braids and the L-Move

Journal of Knot Theory and Its Ramifications, 2006

In this paper we prove a Markov theorem for virtual braids and for analogs of this structure including flat virtual braids and welded braids. The virtual braid group is the natural companion to the category of virtual knots, just as the Artin braid group is the natural companion to classical knots and links. In this paper we follow L-move methods to prove the Virtual Markov theorems. One benefit of this approach is a fully local algebraic formulation of the theorems in each category.

Virtual braids from a topological viewpoint

Journal of Knot Theory and Its Ramifications, 2015

Virtual braids are a combinatorial generalization of braids. We present abstract braids as equivalence classes of braid diagrams on a surface, joining two distinguished boundary components. They are identified up to isotopy, compatibility, stability and Reidemeister moves. We show that virtual braids are in a bijective correspondence with abstract braids. Finally we demonstrate that for any abstract braid, its representative of minimal genus is unique up to compatibility and Reidemeister moves. The genus of such a representative is thus an invariant for virtual braids. We also give a complete proof of the fact that there is a bijective correspondence between virtually equivalent virtual braid diagrams and braid-Gauss diagrams.

Alexander- and Markov-Type Theorems for Virtual Trivalent Braids

Journal of Knot Theory and Its Ramifications

We prove Alexander- and Markov-type theorems for virtual spatial trivalent graphs and virtual trivalent braids. We provide two versions for the Markov-type theorem: one uses an algebraic approach similar to the case of classical braids and the other one is based on [Formula: see text]-moves.

Virtual braids

Fundamenta Mathematicae, 2004

This paper gives a new method for converting virtual knots and links to virtual braids. Indeed, the braiding method given here is quite general and applies to all the categories in which braiding can be accomplished. This includes the braiding of classical, virtual, flat, welded, unrestricted, and singular knots and links. We also give reduced presentations for the virtual braid group and for the flat virtual braid group (as well as for other categories). These reduced presentations are based on the fact that these virtual braid groups for n strands are generated by a single braiding element plus the generators of the symmetric group on n letters.

Braids and Knots

We introduce braids via their historical roots and uses, make connections with knot theory and present the mathematical theory of braids through the braid group. Several basic mathematical properties of braids are explored and equivalence problems under several conditions defined and partly solved. The connection with knots is spelled out in detail and translation methods are presented. Finally a number of applications of braid theory are given. The presentation is pedagogical and principally aimed at interested readers from different fields of mathematics and natural science. The discussions are as self-contained as can be expected within the space limits and require very little previous mathematical knowledge. Literature references are given throughout to the original papers and to overview sources where more can be learned.

Studying links via closed braids. VI. A nonfiniteness theorem

Pacific Journal of Mathematics, 1992

Exchange moves were introduced in an earlier paper by the same authors. They take one closed n-braid representative of a link to another, and can lead to examples where there are infinitely many conjugacy classes of n-braids representing a single link type. THEOREM I. If a link type has infinitely many conjugacy classes of closed n-braid representatives, then n > 4 and the infinitely many classes divide into finitely many equivalence classes under the equivalence relation generated by exchange moves. This theorem is the last of the preliminary steps in the authors' program for the development of a calculus on links in S 3. THEOREM 2. Choose integers n, g > 1. Then there are at most finitely many link types with braid index n and genus g.

A Categorical Model for the Virtual Braid Group

Journal of Knot Theory and Its Ramifications, 2012

This paper gives a new interpretation of the virtual braid group in terms of a strict monoidal category SC that is freely generated by one object and three morphisms, two of the morphisms corresponding to basic pure virtual braids and one morphism corresponding to a transposition in the symmetric group. The key to this approach is to take pure virtual braids as primary. The generators of the pure virtual braid group are abstract solutions to the algebraic Yang-Baxter equation. This point of view illuminates representations of the virtual braid groups and pure virtual braid groups via solutions to the algebraic Yang-Baxter equation. In this categorical framework, the virtual braid group is a natural group associated with the structure of algebraic braiding. We then point out how the category SC is related to categories associated with quantum algebras and Hopf algebras and with quantum invariants of virtual links.

Minimum Braids: A Complete Invariant of Knots and Links

arXiv (Cornell University), 2004

Minimum braids are a complete invariant of knots and links. This paper defines minimum braids, describes how they can be generated, presents tables for knots up to ten crossings and oriented links up to nine crossings, and uses minimum braids to study graph trees, amphicheirality, unknotting numbers, and periodic tables.