Rising Roles of Small Noncoding RNAs in Cotranscriptional Regulation: In Silico Study of miRNA and piRNA Regulatory Network in Humans (original) (raw)
Related papers
PuTmiR: A database for extracting neighboring transcription factors of human microRNAs
BMC Bioinformatics, 2010
Background: Some of the recent investigations in systems biology have revealed the existence of a complex regulatory network between genes, microRNAs (miRNAs) and transcription factors (TFs). In this paper, we focus on TF to miRNA regulation and provide a novel interface for extracting the list of putative TFs for human miRNAs. A putative TF of an miRNA is considered here as those binding within the close genomic locality of that miRNA with respect to its starting or ending base pair on the chromosome. Recent studies suggest that these putative TFs are possible regulators of those miRNAs.
BMC Systems Biology, 2012
Background: Transcription factors (TFs) have long been known to be principally activators of transcription in eukaryotes and prokaryotes. The growing awareness of the ubiquity of microRNAs (miRNAs) as suppressive regulators in eukaryotes, suggests the possibility of a mutual, preferential, self-regulatory connectivity between miRNAs and TFs. Here we investigate the connectivity from TFs and miRNAs to other genes and each other using text mining, TF promoter binding site and 6 different miRNA binding site prediction methods. Results: In the first approach text mining of PubMed abstracts reveal statistically significant associations between miRNAs and both TFs and signal transduction gene classes. Secondly, prediction of miRNA targets in human and mouse 3'UTRs show enrichment only for TFs but not consistently across prediction methods for signal transduction or other gene classes. Furthermore, a random sample of 986 TarBase entries was scored for experimental evidence by manual inspection of the original papers, and enrichment for TFs was observed to increase with score. Low-scoring TarBase entries, where experimental evidence is anticorrelated miRNA:mRNA expression with predicted miRNA targets, appear not to select for real miRNA targets to any degree. Our manually validated text-mining results also suggests that miRNAs may be activated by more TFs than other classes of genes, as 7% of miRNA:TF co-occurrences in the literature were TFs activating miRNAs. This was confirmed when thirdly, we found enrichment for predicted, conserved TF binding sites in miRNA and TF genes compared to other gene classes.
BMC Bioinformatics, 2010
Background: Transcription Factors (TFs) and microRNAs (miRNAs) are key players for gene expression regulation in higher eukaryotes. In the last years, a large amount of bioinformatic studies were devoted to the elucidation of transcriptional and post-transcriptional (mostly miRNA-mediated) regulatory interactions, but little is known about the interplay between them. Description: Here we describe a dynamic web-accessible database, CircuitsDB, supporting a genome-wide transcriptional and post-transcriptional regulatory network integration, for the human and mouse genomes, based on a bioinformatic sequence-analysis approach. In particular, CircuitsDB is currently focused on the study of mixed miRNA/TF Feed-Forward regulatory Loops (FFLs), i.e. elementary circuits in which a master TF regulates an miRNA and together with it a set of Joint Target protein-coding genes. The database was constructed using an ab-initio oligo analysis procedure for the identification of the transcriptional and post-transcriptional interactions. Several external sources of information were then pooled together to obtain the functional annotation of the proposed interactions. Results for human and mouse genomes are presented in an integrated web tool, that allows users to explore the circuits, investigate their sequence and functional properties and thus suggest possible biological experiments. Conclusions: We present CircuitsDB, a web-server devoted to the study of human and mouse mixed miRNA/ TF Feed-Forward regulatory circuits, freely available at: http://biocluster.di.unito.it/circuits/
Nucleic Acids Research, 2007
Transcriptional cis-regulatory control regions frequently are found within non-coding DNA segments conserved across multi-species gene orthologs. Adopting a systematic gene-centric pipeline approach, we report here the development of a web-accessible database resource-GenomeTraFac (http://genometra fac.cchmc.org)-that allows genome-wide detection and characterization of compositionally similar cisclusters that occur in gene orthologs between any two genomes for both microRNA genes as well as conventional RNA-encoding genes. Each ortholog gene pair can be scanned to visualize overall conserved sequence regions, and within these, the relative density of conserved cis-element motif clusters form graph peak structures. The results of these analyses can be mined en masse to identify most frequently represented cis-motifs in a list of genes. The system also provides a method for rapid evaluation and visualization of gene model-consistency between orthologs, and facilitates consideration of the potential impact of sequence variation in conserved non-coding regions to impact complex ciselement structures. Using the mouse and human genomes via the NCBI Reference Sequence database and the Sanger Institute miRBase, the system demonstrated the ability to identify validated transcription factor targets within promoter and distal genomic regulatory regions of both conventional and microRNA genes.
Global and Local Architecture of the Mammalian microRNA–Transcription Factor Regulatory Network
PLoS Computational Biology, 2007
microRNAs (miRs) are small RNAs that regulate gene expression at the posttranscriptional level. It is anticipated that, in combination with transcription factors (TFs), they span a regulatory network that controls thousands of mammalian genes. Here we set out to uncover local and global architectural features of the mammalian miR regulatory network. Using evolutionarily conserved potential binding sites of miRs in human targets, and conserved binding sites of TFs in promoters, we uncovered two regulation networks. The first depicts combinatorial interactions between pairs of miRs with many shared targets. The network reveals several levels of hierarchy, whereby a few miRs interact with many other lowly connected miR partners. We revealed hundreds of ''target hubs'' genes, each potentially subject to massive regulation by dozens of miRs. Interestingly, many of these target hub genes are transcription regulators and they are often related to various developmental processes. The second network consists of miR-TF pairs that coregulate large sets of common targets. We discovered that the network consists of several recurring motifs. Most notably, in a significant fraction of the miR-TF coregulators the TF appears to regulate the miR, or to be regulated by the miR, forming a diversity of feed-forward loops. Together these findings provide new insights on the architecture of the combined transcriptional-post transcriptional regulatory network.
Alternative mRNA fates identified in microRNA-associated transcriptome analysis
BMC Genomics, 2012
Background MicroRNA (miRNA) are small non-coding RNA molecules which function as nucleic acid-based specificity factors in the universal RNA binding complex known as the RNA induced silencing complex (RISC). In the canonical gene-silencing pathway, these activated RISC particles are associated with RNA decay and gene suppression, however, there is evidence to suggest that in some circumstances they may also stabilise their target RNA and even enhance translation. To further explore the role of miRNA in this context, we performed a genome-wide expression analysis to investigate the molecular consequences of bidirectional modulation of the disease-associated miRNAs miR-181b and miR-107 in multiple human cell lines. Results This data was subjected to pathways analysis and correlated against miRNA targets predicted through seed region homology. This revealed a large number of both conserved and non-conserved miRNA target genes, a selection of which were functionally validated through re...
Nucleic acids research, 2015
TFmiR is a freely available web server for deep and integrative analysis of combinatorial regulatory interactions between transcription factors, microRNAs and target genes that are involved in disease pathogenesis. Since the inner workings of cells rely on the correct functioning of an enormously complex system of activating and repressing interactions that can be perturbed in many ways, TFmiR helps to better elucidate cellular mechanisms at the molecular level from a network perspective. The provided topological and functional analyses promote TFmiR as a reliable systems biology tool for researchers across the life science communities. TFmiR web server is accessible through the following URL: http://service.bioinformatik.uni-saarland.de/tfmir.