Majorization in quantum adiabatic algorithms (original) (raw)

The majorization theory has been applied to analyze the mathematical structure of quantum algorithms. An empirical conclusion by numerical simulations obtained in the previous literature indicates that step-by-step majorization seems to appear universally in quantum adiabatic algorithms. In this paper, a rigorous analysis of the majorization arrow in a special class of quantum adiabatic algorithms is carried out. In particular, we prove that for any adiabatic algorithm of this class, step-by-step majorization of the ground state holds exactly. For the actual state, we show that step-by-step majorization holds approximately, and furthermore that the longer the running time of the algorithm, the better the approximation.