Current Trends in Brain���Computer Interface (BCI) Research and Development (original) (raw)
Related papers
A comprehensive assessment of Brain Computer Interfaces: Recent trends and challenges
Journal of Neuroscience Methods, 2020
Background: An uninterrupted channel of communication and control between the human brain and electronic processing units has led to an increased use of Brain Computer Interfaces (BCIs). This article attempts to present an all-encompassing review on BCI and the scientific advancements associated with it. The ultimate goal of this review is to provide a general overview of the BCI technology and to shed light on different aspects of BCIs. This review also underscores the applications, practical challenges and opportunities associated with BCI technology, which can be used to accelerate future developments in this field. Methods: This review is based on a systematic literature search for tracking down the relevant research annals and proceedings. Using a methodical search strategy, the search was carried out across major technical databases. The retrieved records were screened for their relevance and a total of 369 research chronicles were engulfed in this review based on the inclusion criteria. Results: This review describes the present scenario and recent advancements in BCI technology. It also identifies several application areas of BCI technology. This comprehensive review provides evidence that, while we are getting ever closer, significant challenges still exist for the development of BCIs that can seamlessly integrate with the user's biological system. Conclusion: The findings of this review confirm the importance of BCI technology in various applications. It is concluded that BCI technology, still in its sprouting phase, requires significant explorations for further development. 1. Introduction The ability to bridge the communication gap between man and machines through Man-Machine Communication Interfaces has led to the innovative use of human-computer Interaction systems. Moreover, BCI (Brain Computer Interface), a widely accepted Human-Computer Interaction system, has gained high popularity among the neuroscientific community. This organization of man-machine interface for communication has been illustrated in Fig. 1. BCI or brain-machine interface (BMI) is an effective device for communication between users and systems. It is an integration of hardware and software systems to facilitate interaction between humans and their surroundings. This interaction is achieved by using the control signals arising due to the cerebral activity (Van Erp et al., 2012). In general, a non-muscular channel is created to convey the intentions of the user to external devices (for instance, computers, assistive devices, neural prostheses, speech synthesizers) for controlling action. The emergence of BCI is usually associated with the development of effective communication channels in biomedical applications. The prime objective is to deliver communication capabilities to rigorously immobilized people. For instance, completely paralyzed or locked-in individuals with neurological neuromuscular disorders (amyotrophic lateral sclerosis, brain stem stroke, spinal cord injury) are usually considered as prospective users. The developments in BCI have led to the creation of assistive devices which assist in the motor restoration and rehabilitation (Rao and Scherer, 2010; Bi et al., 2013). Thus, BCI validates its proficiency in improving the quality of life along with the reduction in the cost of intensive care (Kögel et al., 2020). Moreover, owing to the promising prospects of BCIs, the research community has widened the focus of BCI applications among healthy users as well with the emphasis on non-medical applications (Blankertz et al., 2010a; Tan and Nijholt, 2012
Brain-computer interface technology: A review of the second international meeting
2003
Over the past decade, many laboratories have begun to explore brain-computer interface (BCI) technology as a radically new communication option for those with neuromuscular impairments that prevent them from using conventional augmentative communication methods. BCI's provide these users with communication channels that do not depend on peripheral nerves and muscles. This article summarizes the first international meeting devoted to BCI research and development. Current BCI's use electroencephalographic (EEG) activity recorded at the scalp or single-unit activity recorded from within cortex to control cursor movement, select letters or icons, or operate a neuroprosthesis. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI which recognizes the commands contained in the input and expresses them in device control. Current BCI's have maximum information transfer rates of 5-25 b/min. Achievement of greater speed and accuracy depends on improvements in signal processing, translation algorithms, and user training. These improvements depend on increased interdisciplinary cooperation between neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective methods for evaluating alternative methods. The practical use of BCI technology depends on the development of appropriate applications, identification of appropriate user groups, and careful attention to the needs and desires of individual users. BCI research and development will also benefit from greater emphasis on peer-reviewed publications, ).
Brain-computer interface technology: a review of the first international meeting
IEEE Transactions on Rehabilitation Engineering, 2000
Over the past decade, many laboratories have begun to explore brain-computer interface (BCI) technology as a radically new communication option for those with neuromuscular impairments that prevent them from using conventional augmentative communication methods. BCI's provide these users with communication channels that do not depend on peripheral nerves and muscles. This article summarizes the first international meeting devoted to BCI research and development. Current BCI's use electroencephalographic (EEG) activity recorded at the scalp or single-unit activity recorded from within cortex to control cursor movement, select letters or icons, or operate a neuroprosthesis. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI which recognizes the commands contained in the input and expresses them in device control. Current BCI's have maximum information transfer rates of 5-25 b/min. Achievement of greater speed and accuracy depends on improvements in signal processing, translation algorithms, and user training. These improvements depend on increased interdisciplinary cooperation between neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective methods for evaluating alternative methods. The practical use of BCI technology depends on the development of appropriate applications, identification of appropriate user groups, and careful attention to the needs and desires of individual users. BCI research and development will also benefit from greater emphasis on peer-reviewed publications, ).
Literature Review Brain Computer Interface System: Challenges and Development
The human brain is a very complex structure. Over the past few decades, many researchers have established the connection between the human brain and digital devices. In this review researchers explained the new technology methods which directly interface the human brain with digital computer devices and controlled them by capturing electric signals which are generated in a brain.
Guest editorial brain-computer interface technology: a review of the second international meeting
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2000
This paper summarizes the Brain-Computer Interfaces for Communication and Control, The Second International Meeting, held in Rensselaerville, NY, in June 2002. Sponsored by the National Institutes of Health and organized by the Wadsworth Center of the New York State Department of Health, the meeting addressed current work and future plans in brain-computer interface (BCI) research. Ninety-two researchers representing 38 different research groups from the United States, Canada, Europe, and China participated. The BCIs discussed at the meeting use electroencephalographic activity recorded from the scalp or single-neuron activity recorded within cortex to control cursor movement, select letters or icons, or operate neuroprostheses. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI that recognizes the commands contained in the input and expresses them in device control. Current BCIs have maximum information transfer rates of up to 25 b/min. Achievement of greater speed and accuracy requires improvements in signal acquisition and processing, in translation algorithms, and in user training. These improvements depend on interdisciplinary cooperation among neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective criteria for evaluating alternative methods. The practical use of BCI technology will be determined by the development of appropriate applications and identification of appropriate user groups, and will require careful attention to the needs and desires of individual users.
A study on recent trends in the field of Brain Computer Interface (BCI
Since 1969, many scientist has started to know about Brain Computer interface technology as a new platform for those with neuromuscular disorder that confine them from using this common rising methods. It gives a direct communication between the brain and a computer or any external devices. Brain Computer Interface offers a huge scope by strengthening or by decreasing human working capability. It has many applications in various fields such as robotics, gaming, neuroscience etc. A brain-computer interface, also known as a brain-machine interface (BMI).It is a direct communication path between the brain's electrical activity and an external device. It can occur through many stages, firstly the user encodes his or her instructions in the electrophysiological input which is provided to BCI then BCI recognize that command and express it in device control. BCI can do all the task properly when Signal acquisition, translation algorithm and user training are fully updated. This device can help millions of physically disabled people to spend their life as regular person.
Summary of over Fifty Years with Brain-Computer Interfaces—A Review
Brain Sciences
Over the last few decades, the Brain-Computer Interfaces have been gradually making their way to the epicenter of scientific interest. Many scientists from all around the world have contributed to the state of the art in this scientific domain by developing numerous tools and methods for brain signal acquisition and processing. Such a spectacular progress would not be achievable without accompanying technological development to equip the researchers with the proper devices providing what is absolutely necessary for any kind of discovery as the core of every analysis: the data reflecting the brain activity. The common effort has resulted in pushing the whole domain to the point where the communication between a human being and the external world through BCI interfaces is no longer science fiction but nowadays reality. In this work we present the most relevant aspects of the BCIs and all the milestones that have been made over nearly 50-year history of this research domain. We mention...