Current Trends in Brain���Computer Interface (BCI) Research and Development (original) (raw)

A comprehensive assessment of Brain Computer Interfaces: Recent trends and challenges

Journal of Neuroscience Methods, 2020

Background: An uninterrupted channel of communication and control between the human brain and electronic processing units has led to an increased use of Brain Computer Interfaces (BCIs). This article attempts to present an all-encompassing review on BCI and the scientific advancements associated with it. The ultimate goal of this review is to provide a general overview of the BCI technology and to shed light on different aspects of BCIs. This review also underscores the applications, practical challenges and opportunities associated with BCI technology, which can be used to accelerate future developments in this field. Methods: This review is based on a systematic literature search for tracking down the relevant research annals and proceedings. Using a methodical search strategy, the search was carried out across major technical databases. The retrieved records were screened for their relevance and a total of 369 research chronicles were engulfed in this review based on the inclusion criteria. Results: This review describes the present scenario and recent advancements in BCI technology. It also identifies several application areas of BCI technology. This comprehensive review provides evidence that, while we are getting ever closer, significant challenges still exist for the development of BCIs that can seamlessly integrate with the user's biological system. Conclusion: The findings of this review confirm the importance of BCI technology in various applications. It is concluded that BCI technology, still in its sprouting phase, requires significant explorations for further development. 1. Introduction The ability to bridge the communication gap between man and machines through Man-Machine Communication Interfaces has led to the innovative use of human-computer Interaction systems. Moreover, BCI (Brain Computer Interface), a widely accepted Human-Computer Interaction system, has gained high popularity among the neuroscientific community. This organization of man-machine interface for communication has been illustrated in Fig. 1. BCI or brain-machine interface (BMI) is an effective device for communication between users and systems. It is an integration of hardware and software systems to facilitate interaction between humans and their surroundings. This interaction is achieved by using the control signals arising due to the cerebral activity (Van Erp et al., 2012). In general, a non-muscular channel is created to convey the intentions of the user to external devices (for instance, computers, assistive devices, neural prostheses, speech synthesizers) for controlling action. The emergence of BCI is usually associated with the development of effective communication channels in biomedical applications. The prime objective is to deliver communication capabilities to rigorously immobilized people. For instance, completely paralyzed or locked-in individuals with neurological neuromuscular disorders (amyotrophic lateral sclerosis, brain stem stroke, spinal cord injury) are usually considered as prospective users. The developments in BCI have led to the creation of assistive devices which assist in the motor restoration and rehabilitation (Rao and Scherer, 2010; Bi et al., 2013). Thus, BCI validates its proficiency in improving the quality of life along with the reduction in the cost of intensive care (Kögel et al., 2020). Moreover, owing to the promising prospects of BCIs, the research community has widened the focus of BCI applications among healthy users as well with the emphasis on non-medical applications (Blankertz et al., 2010a; Tan and Nijholt, 2012

Brain-computer interface technology: A review of the second international meeting

2003

Over the past decade, many laboratories have begun to explore brain-computer interface (BCI) technology as a radically new communication option for those with neuromuscular impairments that prevent them from using conventional augmentative communication methods. BCI's provide these users with communication channels that do not depend on peripheral nerves and muscles. This article summarizes the first international meeting devoted to BCI research and development. Current BCI's use electroencephalographic (EEG) activity recorded at the scalp or single-unit activity recorded from within cortex to control cursor movement, select letters or icons, or operate a neuroprosthesis. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI which recognizes the commands contained in the input and expresses them in device control. Current BCI's have maximum information transfer rates of 5-25 b/min. Achievement of greater speed and accuracy depends on improvements in signal processing, translation algorithms, and user training. These improvements depend on increased interdisciplinary cooperation between neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective methods for evaluating alternative methods. The practical use of BCI technology depends on the development of appropriate applications, identification of appropriate user groups, and careful attention to the needs and desires of individual users. BCI research and development will also benefit from greater emphasis on peer-reviewed publications, ).

Brain-computer interface technology: a review of the first international meeting

IEEE Transactions on Rehabilitation Engineering, 2000

Over the past decade, many laboratories have begun to explore brain-computer interface (BCI) technology as a radically new communication option for those with neuromuscular impairments that prevent them from using conventional augmentative communication methods. BCI's provide these users with communication channels that do not depend on peripheral nerves and muscles. This article summarizes the first international meeting devoted to BCI research and development. Current BCI's use electroencephalographic (EEG) activity recorded at the scalp or single-unit activity recorded from within cortex to control cursor movement, select letters or icons, or operate a neuroprosthesis. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI which recognizes the commands contained in the input and expresses them in device control. Current BCI's have maximum information transfer rates of 5-25 b/min. Achievement of greater speed and accuracy depends on improvements in signal processing, translation algorithms, and user training. These improvements depend on increased interdisciplinary cooperation between neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective methods for evaluating alternative methods. The practical use of BCI technology depends on the development of appropriate applications, identification of appropriate user groups, and careful attention to the needs and desires of individual users. BCI research and development will also benefit from greater emphasis on peer-reviewed publications, ).

Literature Review Brain Computer Interface System: Challenges and Development

The human brain is a very complex structure. Over the past few decades, many researchers have established the connection between the human brain and digital devices. In this review researchers explained the new technology methods which directly interface the human brain with digital computer devices and controlled them by capturing electric signals which are generated in a brain.

Guest editorial brain-computer interface technology: a review of the second international meeting

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2000

This paper summarizes the Brain-Computer Interfaces for Communication and Control, The Second International Meeting, held in Rensselaerville, NY, in June 2002. Sponsored by the National Institutes of Health and organized by the Wadsworth Center of the New York State Department of Health, the meeting addressed current work and future plans in brain-computer interface (BCI) research. Ninety-two researchers representing 38 different research groups from the United States, Canada, Europe, and China participated. The BCIs discussed at the meeting use electroencephalographic activity recorded from the scalp or single-neuron activity recorded within cortex to control cursor movement, select letters or icons, or operate neuroprostheses. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI that recognizes the commands contained in the input and expresses them in device control. Current BCIs have maximum information transfer rates of up to 25 b/min. Achievement of greater speed and accuracy requires improvements in signal acquisition and processing, in translation algorithms, and in user training. These improvements depend on interdisciplinary cooperation among neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective criteria for evaluating alternative methods. The practical use of BCI technology will be determined by the development of appropriate applications and identification of appropriate user groups, and will require careful attention to the needs and desires of individual users.

A study on recent trends in the field of Brain Computer Interface (BCI

Since 1969, many scientist has started to know about Brain Computer interface technology as a new platform for those with neuromuscular disorder that confine them from using this common rising methods. It gives a direct communication between the brain and a computer or any external devices. Brain Computer Interface offers a huge scope by strengthening or by decreasing human working capability. It has many applications in various fields such as robotics, gaming, neuroscience etc. A brain-computer interface, also known as a brain-machine interface (BMI).It is a direct communication path between the brain's electrical activity and an external device. It can occur through many stages, firstly the user encodes his or her instructions in the electrophysiological input which is provided to BCI then BCI recognize that command and express it in device control. BCI can do all the task properly when Signal acquisition, translation algorithm and user training are fully updated. This device can help millions of physically disabled people to spend their life as regular person.

Summary of over Fifty Years with Brain-Computer Interfaces—A Review

Brain Sciences

Over the last few decades, the Brain-Computer Interfaces have been gradually making their way to the epicenter of scientific interest. Many scientists from all around the world have contributed to the state of the art in this scientific domain by developing numerous tools and methods for brain signal acquisition and processing. Such a spectacular progress would not be achievable without accompanying technological development to equip the researchers with the proper devices providing what is absolutely necessary for any kind of discovery as the core of every analysis: the data reflecting the brain activity. The common effort has resulted in pushing the whole domain to the point where the communication between a human being and the external world through BCI interfaces is no longer science fiction but nowadays reality. In this work we present the most relevant aspects of the BCIs and all the milestones that have been made over nearly 50-year history of this research domain. We mention...

Brain--computer interface (BCI)

Proceedings of the 10th asia pacific conference on Computer human interaction - APCHI '12, 2012

The P300 speller is a standard paradigm for brain-computer interfacing (BCI) based on electroencephalography (EEG). It exploits the fact that the user's selective attention to a target stimulus among a random sequence of stimuli enhances the magnitude of the P300 evoked potential. The present study questions the necessity of using random sequences of stimulation. In two types of experimental runs, subjects attended to a target stimulus while the stimuli, four in total, were each intensified twelve times, in either random order or deterministic order. The 32-channel EEG data were analyzed offline using linear discriminant analysis (LDA). Similar classification accuracies of 95.3% and 93.2% were obtained for the random and deterministic runs, respectively, using the data associated with 3 sequences of stimulation. Furthermore, using a montage of 5 posterior electrodes, the two paradigms attained identical accuracy of 92.4%. These results suggest that: (a) the use of random sequences is not necessary for effective BCI performance; and (b) deterministic sequences can be used in some BCI speller applications.

Brain-Computer Interfacing [In the Spotlight

IEEE Signal Processing Magazine, 2000

Recently, CNN reported on the future of brain-computer interfaces (BCIs) . Brain-computer interfaces are devices that process a user's brain signals to allow direct communication and interaction with the environment. BCIs bypass the normal neuromuscular output pathways and rely on digital signal processing and machine learning to translate brain signals to action ( ). Historically, BCIs were developed with biomedical applications in mind, such as restoring communication in completely paralyzed individuals and replacing lost motor function. More recent applications have targeted non-disabled individuals by exploring the use of BCIs as a novel input device for entertainment and gaming.

International Assessment of Research and Development in Brain-Computer Interfaces. WTEC Panel Report

2007

: Brain-computer interface (BCI) research deals with establishing communication pathways between the brain and external devices. BCI systems can be broadly classified depending on the placement of the electrodes used to detect and measure neurons firing in the brain: in invasive systems, electrodes are inserted directly into the cortex; in noninvasive systems, they are placed on the scalp and use electroencephalography or electrocorticography to detect neuron activity. This WTEC study was designed to gather information on worldwide status and trends in BCI research and to disseminate it to government decision makers and the research community. The study reviewed and assessed the state of the art in sensor technology, the biotic/abiotic interface and biocompatibility, data analysis and modeling, hardware implementation, systems engineering, functional electrical stimulation, noninvasive communication systems, and cognitive and emotional neuroprostheses in academic research and industry.

Workshops of the eighth international brain–computer interface meeting: BCIs: the next frontier

Brain-Computer Interfaces, 2022

People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

Workshops of the Sixth International Brain–Computer Interface Meeting: brain–computer interfaces past, present, and future

Brain-Computer Interfaces, 2017

The conference included 28 workshops covering topics in BCI and brain-machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development.

Recent Trends in Brain-Computer Interface

ICCIIS 2007, Madurai, India 2 OUTLINE Motivation Introduction • Where it is used? • Main elements of a BCI system • Current non-invasive BCI systems • Types of EEG based BCI systems • Which is the best EEG based BCI? • Challenges • The Future ICCIIS 2007, Madurai, India

Brain–computer interfaces for communication and control

For many years people have speculated that electroencephalographic activity or other electrophysiological measures of brain function might provide a new non-muscular channel for sending messages and commands to the external world – a brain–computer interface (BCI). Over the past 15 years, productive BCI research programs have arisen. Encouraged by new understanding of brain function, by the advent of powerful low-cost computer equipment, and by growing recognition of the needs and potentials of people with disabilities, these programs concentrate on developing new augmentative communication and control technology for those with severe neuromuscular disorders, such as amyotrophic lateral sclerosis, brainstem stroke, and spinal cord injury. The immediate goal is to provide these users, who may be completely paralyzed, or 'locked in', with basic communication capabilities so that they can express their wishes to caregivers or even operate word processing programs or neuroprostheses. Present-day BCIs determine the intent of the user from a variety of different electrophysiological signals. These signals include slow cortical potentials, P300 potentials, and mu or beta rhythms recorded from the scalp, and cortical neuronal activity recorded by implanted electrodes. They are translated in real-time into commands that operate a computer display or other device. Successful operation requires that the user encode commands in these signals and that the BCI derive the commands from the signals. Thus, the user and the BCI system need to adapt to each other both initially and continually so as to ensure stable performance. Current BCIs have maximum information transfer rates up to 10–25 bits/min. This limited capacity can be valuable for people whose severe disabilities prevent them from using conventional augmentative communication methods. At the same time, many possible applications of BCI technology, such as neuroprosthesis control, may require higher information transfer rates. Future progress will depend on: recognition that BCI research and development is an interdisciplinary problem, involving neurobiology, psychology, engineering, mathematics, and computer science; identification of those signals, whether evoked potentials, spontaneous rhythms, or neuronal firing rates, that users are best able to control independent of activity in conventional motor output pathways; development of training methods for helping users to gain and maintain that control; delineation of the best algorithms for translating these signals into device commands; attention to the identification and elimination of artifacts such as electromyographic and electro-oculographic activity; adoption of precise and objective procedures for evaluating BCI performance; recognition of the need for long-term as well as short-term assessment of BCI performance; identification of appropriate BCI applications and appropriate matching of applications and users; and attention to factors that affect user acceptance of augmentative technology, including ease of use, cosmesis, and provision of those communication and control capacities that are most important to the user. Development of BCI technology will also benefit from greater emphasis on peer-reviewed research publications and avoidance of the hyperbolic and often misleading media attention that tends to generate unrealistic expectations in the public and skepticism in other researchers. With adequate recognition and effective engagement of all these issues, BCI systems could eventually provide an important new communication and control option for those with motor disabilities and might also give those without disabilities a supplementary control channel or a control channel useful in special circumstances. q

Brain-computer interface research at Katholieke Universiteit Leuven

We present an overview of our Brain-computer interface (BCI) research, invasive as well as non-invasive, during the past four years. The invasive BCIs are based on local fieldand action potentials recorded with microelectrode arrays implanted in the visual cortex of the macaque monkey. The non-invasive BCIs are based on electroencephalogram (EEG) recorded from a human subject's scalp. Several EEG paradigms were used to enable the subject to type text or to select icons on a computer screen, without having to rely on one's fingers, gestures, or any other form of motor activity: the P300 event-related potential, the steady-state visual evoked potential, and the error related potential. We report on the status of our EEG BCI tests on healthy subjects as well as patients with severe communication disabilities, and our demonstrations to a broad audience to raise the public awareness of BCI.

Current trends in hardware and software for brain–computer interfaces (BCIs)

Journal of Neural Engineering, 2011

A brain-computer interface (BCI) provides a non-muscular communication channel to people with and without disabilities. BCI devices consist of hardware and software. BCI hardware records signals from the brain, either invasively or non-invasively, using a series of device components. BCI software then translates these signals into device output commands and provides feedback. One may categorize different types of BCI applications into the following four categories: basic research, clinical/translational research, consumer products, and emerging applications. These four categories use BCI hardware and software, but have different sets of requirements. For example, while basic research needs to explore a wide range of system configurations, and thus requires a wide range of hardware and software capabilities, applications in the other three categories may be designed for relatively narrow purposes and thus may only need a very limited subset of capabilities. This paper summarizes technical aspects for each of these four categories of BCI applications. The results indicate that BCI technology is in transition from isolated demonstrations to systematic research and commercial development. This process requires several multidisciplinary efforts, including the development of better integrated and more robust BCI hardware and software, the definition of standardized interfaces, and the development of certification, dissemination and reimbursement procedures.

Brain–Computer Interface: Past, Present & Future

Abstract—BCI allows users to communicate with others by using only brain activity without using peripheral nerves and muscles of human body. On BCI research the Electroencephalogram (EEG) is used for recording the electrical activity along the scalp. EEG is used to measure the voltage fluctuations resulting from ionic current flows within the neurons of the brain. A German neuroscientist, Hans Berger’s discovered the electrical activity of human brain by using EEG in 1924. Hans Berger was the first one who recorded an Alpha Wave from a human brain. In 1970 Defense Advanced Research Projects Agency of USA initiated the program to explore brain communications using EEG. In 1999 the First International Meeting on BCI was arranged at New York. The Fourth International BCI Conference was held at Asilomar, CA, USA in 2010. In the present year the 5 International BCI Conference 2011 was held at Austria in September. In this paper some indicators and predictions for the future of BCI is mentioned later. th