Negative Survey with Manual Selection: A Case Study in Chinese Universities (original) (raw)
2017
Abstract
Negative survey is a promising method which can protect personal privacy while collecting sensitive data. Most of previous works focus on negative survey models with specific hypothesis, e.g., the probability of selecting negative categories follows the uniform distribution or Gaussian distribution. Moreover, as far as we know, negative survey is never conducted with manual selection in real world. In this paper, we carry out such a negative survey and find that the survey may not follow the previous hypothesis. And existing reconstruction methods like NStoPS and NStoPS-I perform poorly on the survey data. Therefore, we propose a method called NStoPS-MLE, which is based on the maximum likelihood estimation, for reconstructing useful information from the collected data. This method also uses background knowledge to enhance its performance. Experimental results show that our method can get more accurate aggregated results than previous methods.
Jianwen Xiang hasn't uploaded this paper.
Let Jianwen know you want this paper to be uploaded.
Ask for this paper to be uploaded.