Transcranial Magnetic Stimulation Over the Human Medial Posterior Parietal Cortex Disrupts Depth Encoding During Reach Planning (original) (raw)
Related papers
Behavioural Brain Research, 2009
A large amount of evidence supports a role for the parietal and frontal cortex in the planning of reaching movements. Nevertheless, neither the timing of involvement of these areas nor if and how their activity can be influenced by external stimuli has been clarified. The parieto-occipital cortex has been investigated by applying transcranial magnetic stimulation (TMS) at 25% (Time 1), 50% (Time 2) and 75% (Time 3) of the reaction time from a go signal to hand movement. No local effect was found with Time 1, since pulses were administered before subjects opened their eyes. Reduction of reaction time was observed at Time 2 when stimuli were applied over the anterior occipital lobe, parieto-occipital cortex and posterior parietal cortex. The effect on the posterior parietal cortex reverted when Time 3 was used. The present data confirm the existence, in humans, of a dorso-medial set of areas involved in on-line planning of reaching movements. Moreover, they provide novel evidence on the time course of this involvement. Finally, present data show that it is possible to interact with the flow of activity along this stream by appropriately delivering TMS pulses.
Journal of …, 2008
Posterior parietal cortex (PPC) has connections with motor and premotor cortex, thought to transfer information relevant for planning movements in space. We used twin-coil transcranial magnetic stimulation (tcTMS) methods to show that the functional interplay between human right PPC and ipsilateral motor cortex (M1) varies with current motor plans. tcTMS during the reaction time of a reach task revealed facilitatory influences of right PPC on right M1 only when planning a (contralateral) leftward rather than rightward reach, at two specific time intervals (50 and 125 ms) after an auditory cue. The earlier reach-direction-specific facilitatory influence from PPC on M1 occurred when subjects were blindfolded or when the targets were presented briefly, so that visual feedback corrections could not occur. PPC-M1 interplay was similar within the left hemisphere but was specific to (contralateral) rightward planned reaches, with peaks at 50 and 100 ms. Functional interplay between human parietal and motor cortex is enhanced during early stages of planning a reach in the contralateral direction.
Role of the posterior parietal cortex in updating reaching movements to a visual target
Nature Neuroscience, 1999
The exact role of posterior parietal cortex (PPC) in visually directed reaching is unknown. We propose that, by building an internal representation of instantaneous hand location, PPC computes a dynamic motor error used by motor centers to correct the ongoing trajectory. With unseen right hands, five subjects pointed to visual targets that either remained stationary or moved during saccadic eye movements. Transcranial magnetic stimulation (TMS) was applied over the left PPC during target presentation. Stimulation disrupted path corrections that normally occur in response to target jumps, but had no effect on those directed at stationary targets. Furthermore, left-hand movement corrections were not blocked, ruling out visual or oculomotor effects of stimulation.
2008
Posterior parietal cortex (PPC) has connections with motor and premotor cortex, thought to transfer information relevant for planning movements in space. We used twin-coil transcranial magnetic stimulation (tcTMS) methods to show that the functional interplay between human right PPC and ipsilateral motor cortex (M1) varies with current motor plans. tcTMS during the reaction time of a reach task revealed facilitatory influences of right PPC on right M1 only when planning a (contralateral) leftward rather than rightward reach, at two specific time intervals (50 and 125 ms) after an auditory cue. The earlier reach-direction-specific facilitatory influence from PPC on M1 occurred when subjects were blindfolded or when the targets were presented briefly, so that visual feedback corrections could not occur. PPC-M1 interplay was similar within the left hemisphere but was specific to (contralateral) rightward planned reaches, with peaks at 50 and 100 ms. Functional interplay between human parietal and motor cortex is enhanced during early stages of planning a reach in the contralateral direction.
2013
Seemingly effortless, we adjust our movements to continuously changing environments. After initiation of a goal-directed movement, the motor command is under constant control of sensory feedback loops. The main sensory signals contributing to movement control are vision and proprioception. Recent neuroimaging studies have focused mainly on identifying the parts of the posterior parietal cortex (PPC) that contribute to visually guided movements. We used event-related TMS and force perturbations of the reaching hand to test whether the same sub-regions of the left PPC contribute to the processing of proprioceptive-only and of multi-sensory information about hand position when reaching for a visual target. TMS over two distinct stimulation sites elicited differential effects: TMS applied over the posterior part of the medial intraparietal sulcus (mIPS) compromised reaching accuracy when proprioception was the only sensory information available for correcting the reaching error. When visual feedback of the hand was available, TMS over the anterior intraparietal sulcus (aIPS) prolonged reaching time. Our results show for the first time the causal involvement of the posterior mIPS in processing proprioceptive feedback for online reaching control, and demonstrate that distinct cortical areas process proprioceptive-only and multi-sensory information for fast feedback corrections.
Transcranial magnetic stimulation and preparation of visually-guided reaching movements
Frontiers in Neuroengineering, 2012
To better define the neural networks related to preparation of reaching, we applied transcranial magnetic stimulation (TMS) to the lateral parietal and frontal cortex. TMS did not evoke effects closely related to preparation of reaching, suggesting that neural networks already identified by our group are not larger than previously thought. We also replicated previous TMS/EEG data by applying TMS to the parietal cortex: new analyses were performed to better support reliability of already reported findings (Zanon et al., 2010; Brain Topography 22, 307-317). We showed the existence of neural circuits ranging from posterior to frontal regions of the brain after the stimulation of parietal cortex, supporting the idea of strong connections among these areas and suggesting their possible temporal dynamic. Connection with ventral stream was confirmed. The present work helps to define those areas which are involved in preparation of natural reaching in humans. They correspond to parieto-occipital, parietal and premotor medial regions of the left hemisphere, i.e., the contralateral one with respect to the moving hand, as suggested by previous studies. Behavioral data support the existence of a discrete stream involved in reaching. Besides the serial flow of activation from posterior to anterior direction, a parallel elaboration of information among parietal and premotor areas seems also to exist. Present cortico-cortical interactions (TMS/EEG experiment) show propagation of activity to frontal, temporal, parietal and more posterior regions, exhibiting distributed communication among various areas in the brain. The neural system highlighted by TMS/EEG experiments is wider with respect to the one disclosed by the TMS behavioral approach. Further studies are needed to unravel this paucity of overlap. Moreover, the understanding of these mechanisms is crucial for the comprehension of response inhibition and changes in prepared actions, which are common behaviors in everyday life.
Transcranial magnetic stimulation of posterior parietal cortex affects decisions of hand choice
Proceedings of the National Academy of Sciences, 2010
Deciding which hand to use for an action is one of the most frequent decisions people make in everyday behavior. Using a speeded reaching task, we provide evidence that hand choice entails a competitive decision process between simultaneously activated action plans for each hand. We then show that single-pulse transcranial magnetic stimulation to the left posterior parietal cortex biases this competitive process, leading to an increase in ipsilateral, left hand reaches. Stimulation of the right posterior parietal cortex did not alter hand choice, suggesting a hemispheric asymmetry in the representations of reach plans. These results are unique in providing causal evidence that the posterior parietal cortex is involved in decisions of hand choice. decision making | motor control | manual reaching | action
PLoS ONE, 2008
Background: Visually determining what is reachable in peripersonal space requires information about the egocentric location of objects but also information about the possibilities of action with the body, which are context dependent. The aim of the present study was to test the role of motor representations in the visual perception of peripersonal space. Methodology: Seven healthy participants underwent a TMS study while performing a right-left decision (control) task or perceptually judging whether a visual target was reachable or not with their right hand. An actual grasping movement task was also included. Single pulse TMS was delivered 80% of the trials on the left motor and premotor cortex and on a control site (the temporo-occipital area), at 90% of the resting motor threshold and at different SOA conditions (50ms, 100ms, 200ms or 300ms).