Acute phase protein expressions in secretory and cistern lining epithelium tissues of the dairy cattle mammary gland during chronic mastitis caused by staphylococci (original) (raw)

Evaluation of breed-dependent differences in the innate immune responses of Holstein and Jersey cows to Staphylococcus aureus intramammary infection

Journal of Dairy Research, 2008

Mastitis is one of the most prevalent diseases of cattle. Various studies have reported breed-dependent differences in the risk for developing this disease. Among two major breeds, Jersey cows have been identified as having a lower prevalence of mastitis than Holstein cows. It is well established that the nature of the initial innate immune response to infection influences the ability of the host to clear harmful bacterial pathogens. Whether differences in the innate immune response to intramammary infections explain, in part, the differential prevalence of mastitis in Holstein and Jersey cows remains unknown. The objective of the current study was to evaluate several parameters of the innate immune response of Holstein and Jersey cows to intramammary infection with Staphylococcus aureus, a common mastitis-inducing pathogen. To control for non-breed related factors that could influence these parameters, all cows were of the same parity, in similar stages of milk production, housed a...

Immune responses to a DNA/protein vaccination strategy against Staphylococcus aureus induced mastitis in dairy cows

Vaccine, 2004

The fibronectin binding protein (FnBP) and clumping factor A (ClfA) of Staphylococcus aureus are important proteins involved in the pathogenesis of staphylococcal bovine mastitis. These antigens were the targets of a DNA and protein vaccination strategy against S. aureus induced mastitis in dairy cows. The DNA vaccine comprised the bicistronic plasmid (pCI-D 1 D 3 -IRES-ClfA) that encoded the fusion of two sequences, (D1 21-34 ; D3 20-33 ) from the fibronectin-binding motifs of FnBP and a fragment from ClfA (aa 221-550) of S. aureus 8325-4 separated by an Internal Ribosomal Entry Site (IRES) sequence. In addition, the vaccine contained the plasmid encoding the bovine granulocyte-macrophage-colony stimulatory factor gene (pCI-bGM-CSF). Four, 7-month pregnant heifers were immunized twice with the DNA vaccine and boosted once with recombinant D 1 D 3 and ClfA proteins while four others were not immunized. The immunization induced lymphoproliferative responses and functional antibodies against D 1 D 3 and ClfA antigens. Three weeks after calving, three mammary quarters of each vaccinated and non-vaccinated cow were challenged with 900 CFU/each of S. aureus Newbould 305. The fourth quarter received saline only. Serum haptoglobin levels, cardiac rhythm and the body temperature of vaccinated cows during the 24-72 h post-challenge were lower than in non-vaccinated animals. At 21 days post-challenge, bacteria were present in 5 of the vaccinated and 11 of the control challenged quarters. The bacteria averaged 1.4 and 3.3 log 10 CFU/ml of milk from vaccinated and control cows respectively. In summary, DNA-protein vaccination against FnBP and ClfA of S. aureus caused both lymphoproliferative and humoral immune responses that provided partial protection of mammary gland from staphylococcal mastitis and better post-challenge conditions in vaccinated cows. (P. Lacasse).

Gene expression adjustment of inflammatory mechanisms in dairy cow mammary gland parenchyma during host defense against staphylococci

Annals of Animal Science

The aim of the study was to identify differences in the expression of splice variants of the PRMT2, LTF and C4A genes in the mammary glands of healthy dairy cows and those infected with staphylococci. An expression study was conducted on 38 Polish Holstein-Friesian dairy cows who were removed from the herd owing to subclinical and chronic mastitic or reproductive issues. Two days before slaughter, milk samples were taken for microbiological analysis and examined for the presence of bacteria. The mammary gland parenchyma samples with a predominance of secretory tissue were taken; these were divided into three groups according to the health status of the mammary gland: H (without pathogenic bacteria in milk), CoNS (with coagulase-negative staphylococci in milk), and CoPS (with coagulase-positive staphylococci in milk). Two of the investigated genes, LTF and C4A, demonstrated variants unequivocally expressed in infected tissue. Two LTF gene variants were found to be associated with cow...

Combining Genome Wide Association Studies and Differential Gene Expression Data Analyses Identifies Candidate Genes Affecting Mastitis Caused by Two Different Pathogens in the Dairy Cow

Open Journal of Animal Sciences, 2015

Mastitis is a costly disease which hampers the dairy industry. Inflammation of the mammary gland is commonly caused by bacterial infection, mainly Escherichia coli, Streptococcus uberis and Staphylococcus aureus. As more bacteria become multi-drug resistant, one potential approach to reduce the disease incidence rate is to breed selectively for the most appropriate and potentially protective innate immune response. The genetic contribution to effective disease resistance is, however, difficult to identify due to the complex interactions that occur. In the present study two published datasets were searched for common differentially expressed genes (DEGs) with similar changes in expression in mammary tissue following intra-mammary challenge with either E. coli or S. uberis. Additionally, the results of seven published genome-wide association studies (GWAS) on different dairy cow populations were used to compile a list of SNPs associated with somatic cell count. All genes located within 2 Mbp of significant SNPs were retrieved from the Ensembl database, based on the UMD3.1 assembly. A final list of 48 candidate genes with a role in the innate immune response identified from both the DEG and GWAS studies was further analyzed using Ingenuity Pathway Analysis. The main signalling pathways highlighted in the response of the bovine mammary gland to both bacterial infections were 1) granulocyte adhesion and diapedesis, 2) ephrin receptor signalling, 3) RhoA signalling and 4) LPS/IL1 mediated inhibition of RXR function. These * Corresponding author. pathways comprised a network regulating the activity of leukocytes, especially neutrophils, during mammary gland inflammation. The timely and properly controlled movement of leukocytes to infection loci seems particularly important in achieving a good balance between pathogen elimination and excessive tissue damage. These results suggest that polymorphisms in key genes in these pathways such as SELP, SELL, BCAR1, ACTR3, CXCL2, CXCL6, CXCL8 and FABP may influence the ability of dairy cows to resist mastitis.

Transcriptome profiling of Staphylococci-infected cow mammary gland parenchyma

BMC Veterinary Research

Background: Genome-wide gene expression profiling allows for identification of genes involved in the defense response of the host against pathogens. As presented here, transcriptomic analysis and bioinformatics tools were applied in order to identify genes expressed in the mammary gland parenchyma of cows naturally infected with coagulase-positive and coagulase-negative Staphylococci. Results: In cows infected with coagulase-positive Staphylococci, being in 1st or 2nd lactation, 1700 differentially expressed genes (DEGs) were identified. However, examination of the 3rd or 4th lactations revealed 2200 DEGs. Gene ontology functional classification showed the molecular functions of the DEGs overrepresented the activity of cytokines, chemokines, and their receptors. In cows infected with coagulase-negative Staphylococci, in the 1st or 2nd lactations 418 DEGs, while in the 3rd or 4th lactations, 1200 DEGs were identified that involved in molecular functions such as protein, calcium ion and lipid binding, chemokine activity, and protein homodimerization. Gene network analysis showed DEGs associated with inflammation, cell migration, and immune response to infection, development of cells and tissues, and humoral responses to infections caused by both types of Staphylococci. Conclusion: A coagulase-positive Staphylococci infection caused a markedly stronger host response than that of coagulase-negative, resulting in vastly increased DEGs. A significant increase in the expression of the FOS, TNF, and genes encoding the major histocompatibility complex proteins (MHC) was observed. It suggests these genes play a key role in the synchronization of the immune response of the cow's parenchyma against mastitis-causing bacteria. Moreover, the following genes that belong to several physiological pathways (KEGG pathways) were selected for further studies as candidate genes of mammary gland immune response for use in Marker Assisted Selection (MAS):

Identification of immune genes and proteins involved in the response of bovine mammary tissue to infection-10

2011

Background: Mastitis in dairy cattle results from infection of mammary tissue by a range of microorganisms but principally coliform bacteria and Gram positive bacteria such as Staphylococcus aureus. The former species are often acquired by environmental contamination while S. aureus is particularly problematic due to its resistance to antibiotic treatments and ability to reside within mammary tissue in a chronic, subclinical state. The transcriptional responses within bovine mammary epithelial tissue subjected to intramammary challenge with S. aureus are poorly characterised, particularly at the earliest stages of infection. Moreover, the effect of infection on the presence of bioactive innate immune proteins in milk is also unclear. The nature of these responses may determine the susceptibility of the tissue and its ability to resolve the infection. Results: Transcriptional profiling was employed to measure changes in gene expression occurring in bovine mammary tissues sampled from three dairy cows after brief and graded intramammary challenges with S. aureus. These limited challenges had no significant effect on the expression pattern of the gene encoding β-casein but caused coordinated up-regulation of a number of cytokines and chemokines involved in pro-inflammatory responses. In addition, the enhanced expression of two genes, S100 calcium-binding protein A12 (S100A12) and Pentraxin-3 (PTX3) corresponded with significantly increased levels of their proteins in milk from infected udders. Both genes were shown to be expressed by mammary epithelial cells grown in culture after stimulation with lipopolysaccharide. There was also a strong correlation between somatic cell count, a widely used measure of mastitis, and the level of S100A12 in milk from a herd of dairy cows. Recombinant S100A12 inhibited growth of Escherichia coli in vitro and recombinant PTX3 bound to E. coli as well as C1q, a subunit of the first component of the complement cascade.

Proteomic 2D-DIGE Analysis of Milk Whey from Dairy Cows with Staphylococcus aureus Mastitis Reveals Overexpression of Host Defense Proteins

Microorganisms, 2020

Bovine mastitis remains a primary focus of dairy cattle disease research due to its considerable negative economic impact on the dairy industry. Subclinical mastitis (SCM), commonly caused by Staphylococcus aureus, lacks overt clinical signs and the diagnosis is based on bacteriological culture and somatic cell counts of milk, both of which have limitations. The main objective of this study was to identify, characterize and quantify the differential abundance of milk whey proteins from cows with S. aureus SCM compared to whey from healthy cows. Using two-dimensional differential gel electrophoresis (2D-DIGE) coupled with liquid chromatography and tandem mass spectrometry, 28 high-abundant proteins were detected in whey from mastitic milk, 9 of which had host defense functions. These included acute phase proteins involved in innate immunity and antimicrobial functions (e.g., serotransferrin, complement C3, fibrinogen gamma-B chain and cathepsin B), and proteins associated with the im...

iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus

Background: Proteomics and bioinformatics may help us better understand the biological adaptations occurring during bovine mastitis. This systems approach also could help identify biomarkers for monitoring clinical and subclinical mastitis. The aim of the present study was to use isobaric tags for relative and absolute quantification (iTRAQ) to screen potential proteins associated with mastitis at late infectious stage. Results: Healthy and mastitic cows’ mammary gland tissues were analyzed using iTRAQ combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS). Bioinformatics analyses of differentially expressed proteins were performed by means of Gene Ontology, metabolic pathways, transcriptional regulation networks using Blast2GO software, the Dynamic Impact Approach and Ingenuity Pathway Analysis. At a false discovery rate of 5%, a total of 768 proteins were identified from 6,499 peptides, which were matched with 15,879 spectra. Compared with healthy mammary gland tissue, 36 proteins were significantly up-regulated (>1.5-fold) while 19 were significantly down-regulated (<0.67-fold) in response to mastitis due to natural infections with Staphylococci aureus. Up-regulation of collagen, type I, alpha 1 (COL1A1) and inter-alpha (Globulin) inhibitor H4 (ITIH4) in the mastitis-infected tissue was confirmed by Western blotting and Immunohistochemistry. Conclusion: This paper is the first to show the protein expression in the late response to a mastitic pathogen, thus, revealing mechanisms associated with host tissue damage. The bioinformatics analyses highlighted the effects of mastitis on proteins such as collagen, fibrinogen, fibronectin, casein alpha and heparan sulfate proteoglycan 2. Our findings provide additional clues for further studies of candidate genes for mastitis susceptibility. The up-regulated expression of COL1A1 and ITIH4 in the mastitic mammary gland may be associated with tissue damage and repair during late stages of infection.

Genetic susceptibility to S. aureus mastitis in sheep: differential expression of mammary epithelial cells in response to live bacteria or supernatant

Physiological Genomics, 2012

Staphylococcus aureus is a prevalent pathogen for mastitis in dairy ruminants and is responsible for both clinical and subclinical mastitis. Mammary epithelial cells (MEC) represent not only a physical barrier against bacterial invasion but are also active players of the innate immune response permitting infection clearance. To decipher their functions in general and in animals showing different levels of genetic predisposition to Staphylococcus in particular, MEC from ewes undergoing a divergent selection on milk somatic cell count were stimulated by S. aureus . MEC response was also studied according to the stimulation condition with live bacteria or culture supernatant. The early MEC response was studied during a 5 h time course by microarray to identify differentially expressed genes with regard to the host genetic background and as a function of the conditions of stimulation. In both conditions of stimulation, metabolic processes were altered, the apoptosis-associated pathways ...