Wilker and Huygens type inequalities for mixed trigonometric-hyperbolic functions (original) (raw)
Abstract
Motivated by the work of J. S\'andor [19], in this paper we establish a new Wilker type and Huygens type inequalities involving the trigonometric and hyperbolic functions. Moreover, in terms of hyperbolic functions, the upper and lower bounds of sin(x)/x and tan(x)/x are given.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (25)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover-New York, 1965.
- Y. J. Bagul, C. Chesneau, Some new simple inequalities involving exponential, trigonometric and hyperbolic functions, Cubo. A Mathematical Journal 21(1) (2019), pp. 21-35. Doi: 10.4067/S0719-06462019000100021
- Y. J. Bagul, C. Chesneau, Two double sided inequalities involving sinc and hyperbolic sinc functions, Int. J. Open Problems Compt. Math., Vol. 12, No. 4, pp. 15-20,
- G. Bercu, and S. Wu, Refinements of certain hyperbolic inequalities via the Padé approximation method, J. Nonlinear Sci. Appl., Vol. 9, No. 7, pp. 5011-5020, 2016. Doi: 10.22436/jnsa.009.07.05
- B. A. Bhayo, J. Sándor, On Jordan's, Redheffer's and Wilker's inequality, Math. Inequal. Appl., Vol. 19, No. 3, pp. 823-839, 2016. Doi: 10.7153/mia-19-60
- H.-H. Chu, Z.-H. Yang, Y.-M. Chu, and W. Zhang, Generalized Wilker-type inequali- ties with two parameters, J. Inequal. Appl., 2016:187, 2016. Doi: 10.1186/s13660-016- 1127-8
- B.-N. Guo, B.-M. Qiao, F. Qi, and W. Li, On new proofs of Wilker's inequalities involving trigonometric functions, Math. Inequal. Appl., Vol. 6, No. 1, pp. 19-22, 2003.
- I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Elsevier, edn. 2007.
- C. Huygens, Oeuvres Completes, Société Hollandaise des Sciences, Haga, 1888-1940.
- R. Klén, M. Visuri, and M. Vuorinen, On Jordan type inequalities for hyperbolic functions, J. Inequal. Appl., Vol. 2010, Article ID 362548, 14 pages, 2010. Doi: 10.1155/2010/362548
- L. Matejíčka, Note on two new Wilker-type inequalities, Int. J. Open Problems Compt. Math., Vol. 4, No. 1, pp. 79-85, 2011.
- A. Mhanna, On a general Huygens-Wilker inequality, Applied Mathematics E-Notes, Vol. 20, pp. 79-81, 2020.
- D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin, (1970).
- C. Mortici, A subtly analysis of Wilker inequality, Appl. Math. Comput., Vol. 231, pp. 516-520, 2014. Doi: 10.1016/j.amc.2014.01.017
- K. Nantomah, An alternative proof of an inequality by Zhu, International Journal of Mathematical Analysis, Vol. 14, No. 3, pp. 133-136, 2020. Doi: 10.12988/ijma.2020.91292
- E. Neuman, and J. Sándor, On some inequalities involving trigonometric and hyper- bolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities, Math. Inequal. Appl., Vol. 13, No. 4, pp. 715-723, 2010. Doi: 10.7153/mia-13-50.
- E. Neuman, On Wilker and Huygens type inequalities, Math. Inequal. Appl., Vol. 15, No. 2, pp. 271-279, 2012. Doi: 10.7153/mia-15-22
- M. Rašajski, T. Lutovac, B. Malešević, Sharpening and Generalizations of Shafer- Fink and Wilker type inequalities: a new approach, J. Nonlinear Sci. Appl., Vol. 11, No. 7, pp. 885-893, 2018. Doi: 10.22436/jnsa.011.07.02
- J. Sándor, On some new Wilker and Huygens type trigonometric-hyperbolic inequali- ties, Proceedings of the Jangjeon Mathematical Society, Vol. 15, No. 2, pp. 145-153, 2012.
- J. B. Wilker, Elementary Problems: E3301-E3306, Amer. Math. Monthly, Vol. 96, No. 1, pp. 54-55, 1989.
- S.-H. Wu, and H. M. Srivastava, A weighted exponential generalization of Wilker's inequality and its applications, Integral Transforms Spec. Funct., Vol. 18, No. 7-8, pp. 529-535, 2007. Doi: 10.1080/10652460701284164
- S. Wu, and L. Debnath, Wilker-type inequalities for hyperbolic functions, Appl. Math. Lett., Vol. 25, No. 5, pp. 837-842, 2012. Doi: 10.1016/j.aml.2011.10.028
- B. Zhang, and C.-P. Chen, Sharp Wilker and Huygens type inequalities for trigono- metric and inverse trigonometric functions, J. Math. Inequal., Vol. 14, No. 3, pp. 673-684, 2020. Doi: 10.7153/jmi-2020-14-43
- L. Zhu, On Wilker-type inequalities, Math. Inequal. Appl., Volume 10, No. 4, pp. 727-731, 2007. Doi: 10.7153/mia-10-67
- L. Zhu, New inequalities of Wilker's type for circular functions, AIMS Mathematics, Vol. 5, No. 5, pp. 4874-4888, 2020. Doi: 10.3934/math.2020311