Wilker and Huygens type inequalities for mixed trigonometric-hyperbolic functions (original) (raw)

Abstract

Motivated by the work of J. S\'andor [19], in this paper we establish a new Wilker type and Huygens type inequalities involving the trigonometric and hyperbolic functions. Moreover, in terms of hyperbolic functions, the upper and lower bounds of sin(x)/x and tan(x)/x are given.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (25)

  1. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover-New York, 1965.
  2. Y. J. Bagul, C. Chesneau, Some new simple inequalities involving exponential, trigonometric and hyperbolic functions, Cubo. A Mathematical Journal 21(1) (2019), pp. 21-35. Doi: 10.4067/S0719-06462019000100021
  3. Y. J. Bagul, C. Chesneau, Two double sided inequalities involving sinc and hyperbolic sinc functions, Int. J. Open Problems Compt. Math., Vol. 12, No. 4, pp. 15-20,
  4. G. Bercu, and S. Wu, Refinements of certain hyperbolic inequalities via the Padé approximation method, J. Nonlinear Sci. Appl., Vol. 9, No. 7, pp. 5011-5020, 2016. Doi: 10.22436/jnsa.009.07.05
  5. B. A. Bhayo, J. Sándor, On Jordan's, Redheffer's and Wilker's inequality, Math. Inequal. Appl., Vol. 19, No. 3, pp. 823-839, 2016. Doi: 10.7153/mia-19-60
  6. H.-H. Chu, Z.-H. Yang, Y.-M. Chu, and W. Zhang, Generalized Wilker-type inequali- ties with two parameters, J. Inequal. Appl., 2016:187, 2016. Doi: 10.1186/s13660-016- 1127-8
  7. B.-N. Guo, B.-M. Qiao, F. Qi, and W. Li, On new proofs of Wilker's inequalities involving trigonometric functions, Math. Inequal. Appl., Vol. 6, No. 1, pp. 19-22, 2003.
  8. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Elsevier, edn. 2007.
  9. C. Huygens, Oeuvres Completes, Société Hollandaise des Sciences, Haga, 1888-1940.
  10. R. Klén, M. Visuri, and M. Vuorinen, On Jordan type inequalities for hyperbolic functions, J. Inequal. Appl., Vol. 2010, Article ID 362548, 14 pages, 2010. Doi: 10.1155/2010/362548
  11. L. Matejíčka, Note on two new Wilker-type inequalities, Int. J. Open Problems Compt. Math., Vol. 4, No. 1, pp. 79-85, 2011.
  12. A. Mhanna, On a general Huygens-Wilker inequality, Applied Mathematics E-Notes, Vol. 20, pp. 79-81, 2020.
  13. D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin, (1970).
  14. C. Mortici, A subtly analysis of Wilker inequality, Appl. Math. Comput., Vol. 231, pp. 516-520, 2014. Doi: 10.1016/j.amc.2014.01.017
  15. K. Nantomah, An alternative proof of an inequality by Zhu, International Journal of Mathematical Analysis, Vol. 14, No. 3, pp. 133-136, 2020. Doi: 10.12988/ijma.2020.91292
  16. E. Neuman, and J. Sándor, On some inequalities involving trigonometric and hyper- bolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities, Math. Inequal. Appl., Vol. 13, No. 4, pp. 715-723, 2010. Doi: 10.7153/mia-13-50.
  17. E. Neuman, On Wilker and Huygens type inequalities, Math. Inequal. Appl., Vol. 15, No. 2, pp. 271-279, 2012. Doi: 10.7153/mia-15-22
  18. M. Rašajski, T. Lutovac, B. Malešević, Sharpening and Generalizations of Shafer- Fink and Wilker type inequalities: a new approach, J. Nonlinear Sci. Appl., Vol. 11, No. 7, pp. 885-893, 2018. Doi: 10.22436/jnsa.011.07.02
  19. J. Sándor, On some new Wilker and Huygens type trigonometric-hyperbolic inequali- ties, Proceedings of the Jangjeon Mathematical Society, Vol. 15, No. 2, pp. 145-153, 2012.
  20. J. B. Wilker, Elementary Problems: E3301-E3306, Amer. Math. Monthly, Vol. 96, No. 1, pp. 54-55, 1989.
  21. S.-H. Wu, and H. M. Srivastava, A weighted exponential generalization of Wilker's inequality and its applications, Integral Transforms Spec. Funct., Vol. 18, No. 7-8, pp. 529-535, 2007. Doi: 10.1080/10652460701284164
  22. S. Wu, and L. Debnath, Wilker-type inequalities for hyperbolic functions, Appl. Math. Lett., Vol. 25, No. 5, pp. 837-842, 2012. Doi: 10.1016/j.aml.2011.10.028
  23. B. Zhang, and C.-P. Chen, Sharp Wilker and Huygens type inequalities for trigono- metric and inverse trigonometric functions, J. Math. Inequal., Vol. 14, No. 3, pp. 673-684, 2020. Doi: 10.7153/jmi-2020-14-43
  24. L. Zhu, On Wilker-type inequalities, Math. Inequal. Appl., Volume 10, No. 4, pp. 727-731, 2007. Doi: 10.7153/mia-10-67
  25. L. Zhu, New inequalities of Wilker's type for circular functions, AIMS Mathematics, Vol. 5, No. 5, pp. 4874-4888, 2020. Doi: 10.3934/math.2020311