Indoor Positioning Techniques and Approaches for Wi-Fi Based Systems (original) (raw)
Related papers
Indoor positioning using wi-fi–how well is the problem understood?
The past decade has witnessed substantial research on methods for indoor Wi-Fi positioning. While much effort has gone into achieving high positioning accuracy and easing fingerprint collection, it is our contention that the general problem is not sufficiently well understood, thus preventing deployments and their usage by applications to become more widespread. Based on our own and published experiences on indoor Wi-Fi positioning deployments, we hypothesize the following: Current indoor Wi-Fi positioning systems and their utilization in applications are hampered by the lack of understanding of the requirements present in the real-world deployments. In this paper, we report findings from qualitatively studying organisational requirements for indoor Wi-Fi positioning. The studied cases and deployments cover both company and public-sector settings and the deployment and evaluation of several types of indoor Wi-Fi positioning systems over durations of up to several years. The findings suggest among others a need for supporting all case-specific user groups, providing software platform independence, low maintenance, allowing positioning of all user devices, regardless of platform and form factor. Furthermore, the findings also vary significantly across organisations, for instance in terms of need for coverage, which motivates the design of orthogonal solutions.
Survey on Wireless Indoor Positioning Systems
Survey on Wireless Indoor Positioning Systems, 2019
Indoor positioning has finally testified a rise in interest, thanks to the big selection of services it is provided, and ubiquitous connectivity. There are currently many systems that can locate a person, be it wireless or by mobile phone and the most common systems in outdoor environments is the GPS, the most common in indoor environments is Wi-Fi positioning technique positioning. The improvement of positioning systems in indoor environments is desirable in many areas as it provides important facilities and services, such as airports, universities, factories, hospitals, and shopping malls. This paper provides an overview of the existing methods based on wireless indoor positioning technique. We focus in this survey on the strengths of these systems mentioned in the literature discordant with the present surveys; we also assess to additionally measure various systems from the scene of energy efficiency, price, and following accuracy instead of comparing the technologies, we also to additionally discuss residual challenges to correct indoor positioning.
Enhanced indoor locationing in a congested Wi-Fi environment
2009
Many context-aware mobile applications require a reasonably accurate and stable estimate of a user's location. While the Global Positioning System (GPS) works quite well worldwide outside of buildings and urban canyons, locating an indoor user in a real-world environment is much more problematic. Several different approaches and technologies have been explored, some involving specialized sensors and appliances, and others using increasingly ubiquitous Wi-Fi and Bluetooth radios. In this project, we want to leverage existing Wi-Fi access points (AP) and seek efficient approaches to gain usefully high room-level accuracy of the indoor location prediction of a mobile user. The Redpin algorithm, in particular, matches the Wi-Fi signal received with the signals in the training data and uses the position of the closest training data as the user's current location. However, in a congested Wi-Fi environment where many APs exist, the standard Redpin algorithm can become confused because of the unstable radio signals received from too many APs. In this paper, we propose several enhanced indoor-locationing algorithms for the congested Wi-Fi environment. Different statistical learning algorithms are compared and empirical results show that: using more neighbors gives better results than using the 1-best neighbor; weighting APs with the correlation between the AP visibility and the location is better than the equally weighted AP combination, and automatic filtering noisy APs increases the overall detection accuracy. Our experiments in a university building show that our enhanced indoor locationing algorithms significantly outperform the-state-of-the-art Redpin algorithm. In addition, this paper also reports our findings on how the size of the training data, the physical size of the room and the number of APs affect the accuracy of indoor locationing.
On indoor position location with wireless LANs
The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2002
Location aware services are becoming attractive with the deployment of next generation wireless networks and broadband multimedia wireless networks especially in indoor and campus areas. To provide location aware services, obtaining the position of a user accurately is important. While it is possible to deploy additional infrastructure for this purpose, using existing communications infrastructure is preferred for cost reasons. Because of technical restrictions, location fingerprinting schemes are the most promising. In this paper we are presenting a systematic study of the performance/tradeoff and deployment issues. In this paper we present some experimental results towards such a systematic study and discuss some issues related to the indoor positioning problem.
Indoor Location Estimation Utilizing Wi-Fi Signals
International Journal of Emerging Trends in Engineering Research, 2020
Global Positioning System is commonly been used for locating a position of a specific structure in finding geographical coordinates of a target area. Though, this application is still having a restricted in term of the signals, might not well operated and ineffective for indoor usage. The study aim is to develop positioning and localization systems by using Wi-Fi signal. Estimation was made based on the measurement of wireless distance for estimation the user's coordinates. Analysis of views called the fingerprint algorithm is used in this study. The algorithm involved two phases over an offline and the online phases of the survey. Unidentified user's coordinates will be in the online phase by comparative databases collected in the survey phase. MATLAB Graphical User Interface and Android has been used to develop a user interface for simulation purposes. Several analyses were performed to define the precision and efficiency of occurred error as the number of access points and the traffic environment. Finally, the user required to provide several inputs e.g. the exact location and the RSS from AP's number at the present location. The simulation-based software will evaluate the estimation location and positioning of the user and will match to user's precise location.
An Overview of Wireless Indoor Geolocation Techniques and Systems
Mobile and Wireless Communications Networks, 2000
Wireless indoor networks are finding their way into the home and office environments. Also, exploiting location information becomes very popular for both wireless service providers and consumers applications. However, the indoor radio channel causes challenges in extracting accurate location information in indoor environment so that traditional GPS and cellular location systems cannot work properly in indoor areas. This paper provides an overview of the indoor geolocation techniques. After introducing an overall architecture for indoor geolocation systems, technical overview of two indoor geolocation systems are presented. To demonstrate the predicted performance of such systems some simulation results obtained from an indoor geolocation demonstrator are presented.
Wits: An Efficient Wi-Fi Based Indoor Positioning and Tracking System
Remote. Sens., 2022
With the development of wireless communication technology, indoor tracking technology has been rapidly developed. Wits presents a new indoor positioning and tracking algorithm with channel state information of Wi-Fi signals. Wits tracks using motion speed. Firstly, it eliminates static path interference and calibrates the phase information. Then, the maximum likelihood of the phase is used to estimate the radial Doppler velocity of the target. Experiments were conducted, and two sets of receiving antennas were used to determine the velocity of a human. Finally, speed and time intervals were used to track the target. Experimental results show that Wits can achieve the mean error of 0.235 m in two different environments with a known starting point. If the starting point is unknown, the mean error is 0.410 m. Wits has good accuracy and efficiency for practical applications.
Review of Indoor Positioning: Radio Wave Technology
Applied Sciences, 2020
The indoor positioning system (IPS) is becoming increasing important in accurately determining the locations of objects by the utilization of micro-electro-mechanical-systems (MEMS) involving smartphone sensors, embedded sources, mapping localizations, and wireless communication networks. Generally, a global positioning system (GPS) may not be effective in servicing the reality of a complex indoor environment, due to the limitations of the line-of-sight (LoS) path from the satellite. Different techniques have been used in indoor localization services (ILSs) in order to solve particular issues, such as multipath environments, the energy inefficiency of long-term battery usage, intensive labour and the resources of offline information collection and the estimation of accumulated positioning errors. Moreover, advanced algorithms, machine learning, and valuable algorithms have given rise to effective ways in determining indoor locations. This paper presents a comprehensive review on the...