Identification of Rickettsia felis in fleas but not ticks on stray cats and dogs and the evidence of Rickettsia rhipicephali only in adult stage of Rhipicephalus sanguineus and Rhipicephalus haemaphysaloides (original) (raw)

Direct evidence of Rickettsia typhi infection in Rhipicephalus sanguineus ticks and their canine hosts

Open Veterinary Journal, 2017

Murine typhus is a rickettsiosis caused by Rickettsia typhi, whose transmission is carried out by rat fleas in urban settlements as classically known, but it also has been related to cat fleas in a suburban alternative cycle that has been suggested by recent reports. These studies remarks that in addition to rats, other animals like cats, opossums and dogs could be implied in the transmission of Rickettsia typhi as infected fleas obtained from serologically positive animals have been detected in samples from endemic areas. In Mexico, the higher number of murine typhus cases have been detected in the Yucatan peninsula, which includes a great southeastern region of Mexico that shows ecologic characteristics similar to the suburban alternative cycle recently described in Texas and California at the United States. To find out which are the particular ecologic characteristics of murine typhus transmission in this region, we analyzed blood and Rhipicephalus sanguineus ticks obtained from domestic dogs by molecular approaches, demonstrating that both samples were infected by Rickettsia typhi. Following this, we obtained isolates that were analyzed by genetic sequencing to corroborate this infection in 100% of the analyzed samples. This evidence suggests for the first time that ticks and dogs could be actively participating in the transmission of murine typhus, in a role that requires further studies for its precise description.

First report of Rickettsia felis in China

BMC infectious diseases, 2014

Background Rickettsia felis is a recently described flea-borne spotted fever group Rickettsia that is an emerging human pathogen. Although there is information on the organism from around the world, there is no information on the organism in China.MethodsWe used a commercial ELISA to detect antibodies reactive against R. felis in blood samples and developed a PCR to detect the gltA of the organism in blood samples and external parasites.ResultsWe found reactive antibodies in people (16%; 28/180), dogs (47%; 128/271) and cats (21%; 19/90) and positive PCRs with DNA from people (0.1%; 1/822), dogs (0.8%; 8/1,059), mice (10%; 1/10), ticks (Rhipicephalus sanguineus; 10%; 15/146), lice (Linognathus setosus; 16%; 6/37), fleas (Ctenocephalides felis felis; 95%; 57/60) and mosquitoes (Anopheles sinensis, Culex pipiens pallens; 6%; 25/428), but not from cats (0/135) or canine fecal swabs (0/43).ConclusionsThis is the first report of R. felis in China where there is serological and/ or PCR ev...

Experimental Infection of Rhipicephalus sanguineus Ticks with the Bacterium Rickettsia rickettsii , Using Experimentally Infected Dogs

Vector-borne and Zoonotic Diseases, 2010

We evaluated if Rickettsia rickettsii-experimentally infected dogs could serve as amplifier hosts for Rhipicephalus sanguineus ticks. In addition, we checked if Rh. sanguineus ticks that acquired Ri. rickettsii from dogs could transmit the bacterium to susceptible hosts (vector competence), and if these ticks could maintain the bacterium by transstadial and transovarial transmissions. Uninfected larvae, nymphs, and adults of Rh. sanguineus were allowed to feed upon three groups of dogs: groups 1 (G1) and 2 (G2) composed of Ri. rickettsii-infected dogs, infected intraperitoneally and via tick bites, respectively, and group 3 composed of uninfected dogs. After larval and nymphal feeding on rickettsemic dogs, 7.1-15.2% and 35.8-37.9% of the molted nymphs and adults, respectively, were shown by polymerase chain reaction (PCR) to be infected by Ri. rickettsii, confirming that both G1 and G2 dogs were efficient sources of rickettsial infection (amplifier host), resulting in transstadial transmission of the agent. These infected nymphs and adults successfully transmitted Ri. rickettsii to guinea pigs, confirming vector competence after acquisition of the infection from rickettsemic dogs. Transovarial transmission of Ri. rickettsii was observed in engorged females that had been infected as nymphs by feeding on both G1 and G2 dogs, but not in engorged females that acquired the infection during adult feeding on these same dogs. In the first case, filial infection rates were generally <50%. No tick exposed to G3 dogs was infected by rickettsiae in this study. No substantial mortality difference was observed between Ri. rickettsii-infected tick groups (G1 and G2) and uninfected tick group (G3). Our results indicate that dogs can be amplifier hosts of Ri. rickettsii for Rh. sanguineus, although only a minority of immature ticks (<45%) should become infected. It appears that Rh. sanguineus, in the absence of horizontal transmission, would not maintain Ri. rickettsii through successive generations, possibly because of low filial infection rates.

Molecular detection of Rickettsia spp. in ticks collected from domestic cats in Lithuania

2021

The aim of this study was to determine the frequency of ticks positive for genus Rickettsia bacteria among ticks collected from domestic dogs in the Department of Piura, Peru, using polymerase chain reaction (PCR) analysis. Ticks were collected from dogs in urban areas of the metropolitan region of Piura, Peru. Only three species of ticks were identified; 977 Rhipicephalus sanguineus (180 nymphs, 417 females, and 380 males), Six Amblyomma triste females, and one Amblyomma tigrinum male. After classifying the specimens morphologically by stage, species, and sex, their total DNA was tested by PCR using primers that amplify fragments of the gltA, ompA, ompB, and htrA genes. The resulting positive sample was sequenced, compared to the GenBank database, and analyzed phylogenetically. The Rickettsia spp. infection rate in the tick pools was 0.2% (1/484); the positive specimen was an R. sanguineus tick. GenBank analysis of the positive sequence revealed 100% identify with Rickettsia felis; however, no products of the htrA, ompA and ompB genes were amplified from this sample. To the best of our knowledge, this is the first report of R. felis in R. sanguineus in Peru.

Isolation and Identification of Rickettsia massiliae from Rhipicephalus sanguineus Ticks Collected in Arizona

Applied and Environmental Microbiology, 2006

Twenty Rhipicephalus sanguineus ticks collected in eastern Arizona were tested by PCR assay to establish their infection rate with spotted fever group rickettsiae. With a nested PCR assay which detects a fragment of the Rickettsia genus-specific 17-kDa antigen gene (htrA), five ticks (25%) were found to contain rickettsial DNA. One rickettsial isolate was obtained from these ticks by inoculating a suspension of a triturated tick into monolayers of Vero E6 monkey kidney cells and XTC-2 clawed toad cells, and its cell culture and genotypic characteristics were determined. Fragments of the 16S rRNA, GltA, rOmpA, rOmpB, and Sca4 genes had 100%, 100%, 99%, 99%, and 99%, respectively, nucleotide similarity to Rickettsia massiliae strain Bar29, previously isolated from R. sanguineus in Catalonia, Spain (L. Beati et al., J. Clin. Microbiol. 34:2688-2694, 1996). The new isolate, AZT80, does not elicit cytotoxic effects in Vero cells and causes a persistent infection in XTC-2 cells. The AZT80 strain is susceptible to doxycycline but resistant to rifampin and erythromycin. Whether R. massiliae AZT80 is pathogenic or infectious for dogs and humans or can cause seroconversion to spotted fever group antigens in the United States is unknown.

A retrospective study of the characterization of Rickettsia species in ticks collected from humans

Ticks and tick-borne diseases, 2017

Rickettsiae (family Rickettsiaceae, order Rickettsiales) are obligate intracellular bacteria transmitted by arthropod vectors. Several Rickettsia species causing vector-borne rickettsioses belong to the spotted fever group (SFG). Traditionally, Rickettsia conorii has been considered as the main etiologic agent of Mediterranean spotted fever. However, the molecular characterization of rickettsiae allowed identifying other species involved in spotted fever in the Mediterranean region. In this study, 42 ticks collected from humans were subjected to morphological identification and molecular characterization of Rickettsia species potentially involved in human rickettsiosis in Sicily. Fourteen ticks positive to at least two Rickettsia spp. molecular markers were used in the study. Identified Rickettsia spp. included R. conorii, found in Rhipicephalus sanguineus sensu lato and Rhipicephalus turanicus, Rickettsia aeschlimannii found in Hyalomma marginatum, Hyalomma lusitanicum, Dermacentor...

Identification of rickettsiae from wild rats and cat fleas in Malaysia

Rickettsioses are emerging zoonotic diseases reported worldwide. In spite of the serological evidence of spotted fever group rickettsioses in febrile patients in Malaysia, limited studies have been conducted to identify the animal reservoirs and vectors of rickettsioses. This study investigated the presence of rickettsiae in the tissue homogenates of 95 wild rats and 589 animal ectoparasites. Using PCR assays targeting the citrate synthase gene (gltA), rickettsial DNA was detected in the tissue homogenates of 13 (13.7%) wild rats. Sequence analysis of the gltA amplicons showed 98.6–100% similarity with those of Rickettsia honei/R. conorii/R. raoultii (Rickettsiales: Rickettsiaceae). Sequence analysis of outer membrane protein A gene (ompA) identified Rickettsia sp. TCM1 strain from two rats. No rickettsia was detected from Laelaps mites, Rhipicephalus sanguineus and Haemaphysalis bispinosa ticks, and Felicola subrostratus lice in this study. R. felis was identified from 32.2% of 177 Ctenocephalides felis fleas. Sequence analysis of the gltA amplicons revealed two genotypes of R. felis (Rf31 and RF2125) in the fleas. As wild rats and cat fleas play an important role in the enzoonotic maintenance of rickettsiae, control of rodent and flea populations may be able to reduce transmission of rickettsioses in the local setting.

Molecular detection of Rickettsia species in ticks collected in the Mexico-USA transboundary region

Experimental and Applied Acarology, 2020

Background: Rickettsiae constitute a group of arthropod-borne, Gram-negative, obligate intracellular bacteria that are the causative agents of diseases ranging from mild to life threatening that impact on medical and veterinary health worldwide. Methods: A total of 6,484 ticks were collected by tick drag from June-October 2013 in the southwestern provinces of the Republic of Korea (ROK) (Jeollanam, n = 3,995; Jeollabuk, n = 680; Chungcheongnam, n = 1,478; and Chungcheongbuk, n = 331). Ticks were sorted into 311 pools according to species, collection site, and stage of development. DNA preparations of tick pools were assayed for rickettsiae by 17 kDa antigen gene and ompA nested PCR (nPCR) assays and the resulting amplicons sequenced to determine the identity and prevalence of spotted fever group rickettsiae (SFGR). Results: Haemaphysalis longicornis (4,471; 52 adults, 123 nymphs and 4,296 larvae) were the most commonly collected ticks, followed by Haemaphysalis flava (1,582; 28 adults, 263 nymphs and 1,291 larvae), and Ixodes nipponensis (431; 25 adults, 5 nymphs and 401 larvae). The minimum field infection rate/100 ticks (assuming 1 positive tick/pool) was 0.93% for the 17 kDa antigen gene and 0.82% for the ompA nPCR assays. The partial 17 kDa antigen and ompA gene sequences from positive pools of H. longicornis were similar to: Rickettsia sp. HI550 (99.4-100%), Rickettsia sp. FUJ98 (99.3-100%), Rickettsia sp. HIR/D91 (99.3-100%), and R. japonica (99.7%). One sequence of the partial 17 kDa antigen gene for H. flava was similar to Rickettsia sp. 17kd-005 (99.7%), while seven sequences of the 17 kDa antigen gene obtained from I. nipponensis ticks were similar to R. monacensis IrR/Munich (98.7-100%) and Rickettsia sp. IRS3 (98.9%). Conclusions: SFG rickettsiae were detected in three species of ixodid ticks collected in the southwestern provinces of the ROK during 2013. A number of rickettsiae have been recently reported from ticks in Korea, some of which were identified as medically important. Results from this study and previous reports demonstrate the need to conduct longitudinal investigations to identify tick-borne rickettsiae and better understand their geographical distributions and potential impact on medical and veterinary health, in addition to risk communication and development of rickettsial disease prevention strategies.

Molecular detection of Rickettsia species in ticks collected from the southwestern provinces of the Republic of Korea

Parasites & vectors, 2017

Rickettsiae constitute a group of arthropod-borne, Gram-negative, obligate intracellular bacteria that are the causative agents of diseases ranging from mild to life threatening that impact on medical and veterinary health worldwide. A total of 6,484 ticks were collected by tick drag from June-October 2013 in the southwestern provinces of the Republic of Korea (ROK) (Jeollanam, n = 3,995; Jeollabuk, n = 680; Chungcheongnam, n = 1,478; and Chungcheongbuk, n = 331). Ticks were sorted into 311 pools according to species, collection site, and stage of development. DNA preparations of tick pools were assayed for rickettsiae by 17 kDa antigen gene and ompA nested PCR (nPCR) assays and the resulting amplicons sequenced to determine the identity and prevalence of spotted fever group rickettsiae (SFGR). Haemaphysalis longicornis (4,471; 52 adults, 123 nymphs and 4,296 larvae) were the most commonly collected ticks, followed by Haemaphysalis flava (1,582; 28 adults, 263 nymphs and 1,291 larva...

Molecular Investigations of Rickettsia helvetica Infection in Dogs, Foxes, Humans, and Ixodes Ticks

Applied and Environmental Microbiology, 2009

Rickettsia helvetica , a tick-borne member of the spotted-fever-group rickettsiae, is a suspected pathogen in humans; however, its role in animals is unknown. The aims of this study were to establish a R. helvetica -specific real-time TaqMan PCR assay and apply it to the analysis of tick vectors (to determine potential exposure risk) and blood samples from Canidae and humans (to determine prevalence of infection). The newly designed 23S rRNA gene assay for R. helvetica was more sensitive than a published citrate synthase gene ( gltA ) assay for several rickettsiae. Blood samples from 884 dogs, 58 foxes, and 214 human patients and 2,073 ticks ( Ixodes spp.) collected from either vegetation or animals were analyzed. Although the maximal likelihood estimate of prevalence was 12% in unfed ticks and 36% in ticks collected from animals, none of the 1,156 blood samples tested PCR positive. Ticks from cats were more frequently PCR positive than ticks from dogs. Sequencing of the 23S rRNA an...