Regulation of PTEN by CK2 and Notch1 in primary T-cell acute lymphoblastic leukemia: rationale for combined use of CK2- and  -secretase inhibitors (original) (raw)

Inhibition of NOTCH Signaling by Gamma Secretase Inhibitor Engages the RB Pathway and Elicits Cell Cycle Exit in T-Cell Acute Lymphoblastic Leukemia Cells

Cancer Research, 2009

NOTCH signaling is deregulated in the majority of T-cell acute lymphoblastic leukemias (T-ALL) as a result of activating mutations in NOTCH1. Gamma secretase inhibitors (GSI) block proteolytic activation of NOTCH receptors and may provide a targeted therapy for TALL. We have investigated the mechanisms of GSI sensitivity across a panel of TALL cell lines, yielding an approach for patient stratification based on pathway activity and also providing a rational combination strategy for enhanced response to GSI. Whereas the NOTCH1 mutation status does not serve as a predictor of GSI sensitivity, a gene expression signature of NOTCH pathway activity does correlate with response, and may be useful in the selection of patients more likely to respond to GSI. Furthermore, inhibition of the NOTCH pathway activity signature correlates with the induction of the cyclin-dependent kinase inhibitors CDKN2D (p19 INK4d) and CDKN1B (p27 Kip1), leading to derepression of RB and subsequent exit from the cell cycle. Consistent with this evidence of cell cycle exit, short-term exposure of GSI resulted in sustained molecular and phenotypic effects after withdrawal of the compound. Combination treatment with GSI and a small molecule inhibitor of CDK4 produced synergistic growth inhibition, providing evidence that GSI engagement of the CDK4/RB pathway is an important mechanism of GSI action and supports further investigation of this combination for improved efficacy in treating TALL .

PI3Kγ/δ and NOTCH1 cross-regulate pathways that define the T-cell acute lymphoblastic leukemia disease signature

Molecular cancer therapeutics, 2017

PI3K/AKT and NOTCH1 signaling pathways are frequently dysregulated in T-cell acute lymphoblastic leukemias (T-ALL). Although we have shown that the combined activities of the class I PI3K isoforms p110γ and p110δ play a major role in the development and progression of PTEN null T-ALL, it has yet to be determined whether their contribution to leukemogenic programing is unique from that associated with NOTCH1 activation. Using a Lmo2-driven mouse model of T-ALL in which both the PI3K/AKT and NOTCH1 pathways are aberrantly upregulated, we now demonstrate that the combined activities of PI3Kγ/δ have both overlapping and distinct roles from NOTCH1 in generating T-ALL disease signature and in promoting tumor cell growth. Treatment of diseased animals with either a dual PI3Kγ/δ or a γ-secretase inhibitor (GSI) reduced tumor burden, prolonged survival, and induced proapoptotic pathways. Consistent with their similar biological effects, both inhibitors downregulated genes involved in cMYC-de...

Investigation of deregulated genes of Notch signaling pathway in human T cell acute lymphoblastic leukemia cell lines and clinical samples

Molecular Biology Reports, 2013

Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

Notch1 regulates chemotaxis and proliferation by controlling the CC-chemokine receptors 5 and 9 in T cell acute lymphoblastic leukaemia

The Journal of Pathology, 2012

Tumour cells often express deregulated profiles of chemokine receptors that regulate cancer cell migration and proliferation. Notch1 pathway activation is seen in T cell acute lymphoblastic leukaemia (T-ALL) due to the high frequency of Notch1 mutations affecting approximately 60% of patients, causing ligand-independent signalling and/or prolonging Notch1 half-life. We have investigated the possible regulative role of Notch1 on the expression and function of chemokine receptors CCR5, CCR9 and CXCR4 that play a role in determining blast malignant properties and localization of extramedullary infiltrations in leukaemia. We inhibited the pathway through γ-Secretase inhibitor and Notch1 RNA interference and analysed the effect on the expression and function of chemokine receptors. Our results indicate that γ-Secretase inhibitor negatively regulates the transcription level of the CC chemokine receptors 5 and 9 in T-ALL cell lines and patients' primary leukaemia cells, leaving CXCR4 expression unaltered. The Notch pathway also controls CCR5-and CCR9-mediated biological effects, ie chemotaxis and proliferation. Furthermore, engaging CCR9 through CCL25 administration rescues proliferation inhibition associated with abrogation of Notch activity. Finally, through RNA interference we demonstrated that the oncogenic isoform in T-ALL, Notch1, plays a role in controlling CCR5 and CCR9 expression and functions. These findings suggest that Notch1, acting in concert with chemokine receptors pathways, may provide leukaemia cells with proliferative advantage and specific chemotactic abilities, therefore influencing tumour cell progression and localization.

Notch1 Receptor Regulates AKT Protein Activation Loop (Thr308) Dephosphorylation through Modulation of the PP2A Phosphatase in Phosphatase and Tensin Homolog (PTEN)-null T-cell Acute Lymphoblastic Leukemia Cells

Journal of Biological Chemistry, 2013

Background: PTEN loss promotes resistance to ␥-secretase inhibitors by increasing AKT signaling in T-cell acute lymphoblastic leukemia (T-ALL) with mutant activated Notch1. Results: Notch1 inhibition increases AKT phosphorylation and involves the PP2A phosphatase. Conclusion: Notch1 regulates PP2A dephosphorylation of AKT-Thr 308 by impacting association of PP2A with AKT. Significance: Better understanding of regulation of AKT signaling by Notch1 may lead to new therapies for TALL. Notch1 activating mutations occur in more than 50% of T-cell acute lymphoblastic leukemia (T-ALL) cases and increase expression of Notch1 target genes, some of which activate AKT. HES1 transcriptionally silences phosphatase and tensin homolog (PTEN), resulting in AKT activation, which is reversed by Notch1 inhibition with ␥-secretase inhibitors (GSIs). Mutational loss of PTEN is frequent in TALL and promotes resistance to GSIs due to AKT activation. GSI treatments increased AKT-Thr 308 phosphorylation and signaling in PTEN-deficient, GSI-resistant TALL cell lines (Jurkat, CCRF-CEM, and MOLT3), suggesting that Notch1 represses AKT independent of its PTEN transcriptional effects. AKT-Thr 308 phosphorylation and downstream signaling were also increased by knocking down Notch1 in Jurkat (N1KD) cells. This was blocked by treatment with the AKT inhibitor perifosine. The PI3K inhibitor wortmannin and the protein phosphatase type 2A (PP2A) inhibitor okadaic acid both impacted AKT-Thr 308 phosphorylation to a greater extent in nontargeted control than N1KD cells, suggesting decreased dephosphorylation of AKT-Thr 308 by PP2A in the latter. Phosphorylations of AMP-activated protein kinase␣ (AMPK␣)-Thr 172 and p70S6K-Thr 389 , both PP2A substrates, were also increased in both N1KD and GSI-treated cells and responded to okadaic acid treatment. A transcriptional regulatory mechanism was implied because ectopic expression of dominant-negative mastermind-like protein 1 increased and wild-type HES1 decreased phosphorylation of these PP2A targets. This was independent of changes in PP2A subunit levels or in vitro PP2A activity, but was accompanied by decreased association of PP2A with AKT in N1KD cells. These results suggest that Notch1 can regulate PP2A dephosphorylation of critical cellular regulators including AKT, AMPK␣, and p70S6K.

Notch signaling as a therapeutic target for acute lymphoblastic leukemia

Expert opinion on therapeutic targets, 2018

Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Although the therapy of ALL has significantly improved, the heterogeneous genetic landscape of the disease often causes relapse, which is difficult to treat. Achieving a positive outcome for patients with relapsed or refractory ALL remains a challenging issue. The high prevalence of NOTCH-activating mutations in T-cell acute lymphoblastic leukemia (T-ALL) and the central role of NOTCH signaling in regulating cell survival and growth of ALL provide a rationale for the development of Notch signaling-targeted strategies in this disease. Therapeutic alternatives with effective anti-leukemic potential and low toxicity are needed. Areas covered: This review provides an overview of the currently available drugs directly or indirectly targeting Notch signaling in ALL. Besides considering the known Notch targeting approaches, such as γ-secretase inhibitors (GSIs) and Notch inhibiting antibodies (mAbs), currently in c...

CDK6-mediated repression of CD25 is required for induction and maintenance of Notch1-induced T-cell acute lymphoblastic leukemia

Leukemia, 2015

T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk subset of acute leukemia, characterized by frequent activation of Notch1 or AKT signaling, where new therapeutic approaches are needed. We showed previously that cyclin-dependent kinase 6 (CDK6) is required for thymic lymphoblastic lymphoma induced by activated AKT. Here, we show CDK6 is required for initiation and maintenance of Notch-induced T-ALL. In a mouse retroviral model, hematopoietic stem/progenitor cells lacking CDK6 protein or expressing kinase-inactive (K43M) CDK6 are resistant to induction of T-ALL by activated Notch, whereas those expressing INK4-insensitive (R31C) CDK6 are permissive. Pharmacologic inhibition of CDK6 kinase induces CD25 and RUNX1 expression, cell cycle arrest and apoptosis in mouse and human T-ALL. Ablation of Cd25 in a K43M background restores Notch-induced T leukemogenesis, with disease that is resistant to CDK6 inhibitors in vivo. These data support a model whereby CDK6-mediated suppression...

Activity of the Notch-signalling Pathway in Circulating Human Chronic Lymphocytic Leukaemia Cells

Scandinavian Journal of Immunology, 2007

Dysregulation of the Notch-pathway has been implicated in the pathogenesis of chronic lymphocytic leukaemia (B-CLL). We characterized the mRNA expression of Notch pathway elements in circulating normal B-and B-CLL cells, and compared expression profiles with clinical and prognostic data. Similar expression profiles were found in normal B-cells and B-CLL cells, however, most B-CLL samples showed lower Hairy/Enhancer of Split-1 expression than normal B-cells, which suggests that the pathway is not over-activated in B-CLL. The expression of Notch-pathway genes did not correlate with other prognostic factors of B-CLL. The importance of Notch-signalling in CLL cells in lymphatic tissue microenvironments remains to be determined.

Dual antitumor mechanisms of Notch signaling inhibitor in a T-cell acute lymphoblastic leukemia xenograft model

Cancer Science, 2009

182 words no tables 5 figures 32 references 4 Summary Constitutive activation of Notch signaling is required for the proliferation of a subgroup of human T cell acute lymphoblastic leukemias (T-ALL). Previous in vitro studies demonstrated the therapeutic potential of Notch signaling inhibitors for treating T-ALL. To further examine this possibility, we applied a γ-secretase inhibitor (GSI) to T-ALL xenograft models. Treatment of established subcutaneous tumors with GSI resulted in partial or complete regression of tumors arising from four T-ALL cell lines that were also sensitive to GSI in vitro. To elucidate the mechanism of action, we transduced DND-41 cells with the active form of Notch1 (aN1), which conferred resistance to in vitro GSI treatment. Nevertheless, in vivo treatment with GSI induced a partial but significant regression of subcutaneous tumors that developed from aN1-transduced DND-41 cells, whereas it induced complete regression of tumors that developed from mock-transduced DND-41 cells. These findings indicate that the remarkable efficacy of GSI might be attributable to dual mechanisms; directly via apoptosis of DND-41 cells through the inhibition of cell-autonomous Notch signaling, and indirectly via disturbance of tumor angiogenesis through the inhibition of non cell-autonomous Notch signaling.