Non-linear modal analysis for bladed disks with friction contact interfaces (original) (raw)

Explicit Finite Element Models of Friction Dampers in Forced Response Analysis of Bladed Disks

Journal of Engineering for Gas Turbines and Power, 2008

A generic method for analysis of nonlinear forced response for bladed disks with friction dampers of different designs has been developed. The method uses explicit finite element modeling of dampers, which allows accurate description of flexibility and, for the first time, dynamic properties of dampers of different designs in multiharmonic analysis of bladed disks. Large-scale finite element damper and bladed disk models containing 104−106 degrees of freedom can be used. These models, together with detailed description of contact interactions over contact interface areas, allow for any level of refinement required for modeling of elastic damper bodies and for modeling of friction contact interactions. Numerical studies of realistic bladed disks have been performed with three different types of underplatform dampers: (i) a “cottage-roof” (also called “wedge”) damper, (ii) seal wire damper, and (iii) a strip damper. Effects of contact interface parameters and excitation levels on damp...

Forced Response Analysis of Integrally Bladed Disks With Friction Ring Dampers

Journal of Vibration and Acoustics, 2010

This paper investigates a damping strategy for integrally bladed disks (blisks) based on the use of friction rings. The steady-state forced response of the blisk with friction rings is derived using the so-called dynamic Lagrangian frequency-time method adapted to cyclic structures with rotating excitations. In addition, an original approach for optimal determination of the number of Fourier harmonics is proposed. In numerical applications, a representative compressor blisk featuring several rings is considered. Each substructure is modeled using finite-elements and a reduced-order modeling technique is used for the blisk. The efficiency of this damping technology is investigated, and friction dissipation phenomena are interpreted with respect to frequency responses. It is shown that the friction damping effectiveness depends mainly on the level of dynamic coupling between blades and disk, and on whether the dynamics features significant alternating stick/slip phases. Through parame...

Experimental and Numerical Investigations of Friction Rings Damping of Blisks

HAL (Le Centre pour la Communication Scientifique Directe), 2008

The use of friction ring dampers for integrally bladed disks (blisks) is investigated numerically and experimentally in this paper. A test rig was developed and consists in an industrial HP compressor blisk rotating inside a vacuum chamber. Excitation is produced through piezoelectric actuators and measured data are obtained from strain gauges. Non-linear resonance curves obtained by stepped sine tests are studied. Interesting phenomena on the behaviour of this damping technology are obtained experimentally. Parametric studies on the influence of the rotation speed or of the excitation level are also presented. A non-linear modal identification method is used in order to extract the modal parameters from the resonance curves. Then a comparison of these experimental results to the results of numerical simulations is proposed. The numerical methods is based on a frequency domain formulation of the system's dynamics; a non-linear modal approach is used. The correlation between the experiments and the predicted results are in quite good agreement given the complexity and the variability of the system and phenomena.

Analysis of Nonlinear Modal Damping due to Friction at Blade Roots Using High-Fidelity Modelling

Volume 7C: Structures and Dynamics, 2018

In this paper, a methodology is developed for analysis of modal damping in root joints of bladed discs using large finite element models and detailed description of friction contacts at contact interfaces of the joints. The methods allows the analysis of: (i) a single blade vibration and (ii) a bladed-disc assembly for any family of modes (lower and higher modes) calculating the modal damping factors for different levels of vibrations. Three-dimension solid finite element models are used in the calculations. The analysis is performed in time domain through the transient dynamics analysis. The methodology allows the use of widely available finite element packages and based on the direct calculation of the energy dissipated at root joints due to micro-slip over the multitude of contact elements modelling the surface-to-surface friction contact interactions. The numerical studies of the dependency of modal damping factors on the vibration amplitudes are performed for simplified and rea...

Nonlinear vibration analysis of bladed disks with dry friction dampers

Journal of Sound and Vibration, 2006

In this work, a new model is proposed for the vibration analysis of turbine blades with dry friction dampers. The aim of the study is to develop a multiblade model that is accurate and yet easy to be analyzed so that it can be used efficiently in the design of friction dampers. The suggested nonlinear model for a bladed disk assembly includes all the blades with blade to blade and/or blade to cover plate dry friction dampers. An important feature of the model is that both macro-slip and micro-slip models are used in representing dry friction dampers. The model is simple to be analyzed as it is the case in macro-slip model, and yet it includes the features of more realistic micro-slip model. The nonlinear multidegree-of-freedom (mdof) model of bladed disk system is analyzed in frequency domain by applying a quasi-linearization technique, which transforms the nonlinear differential equations into a set of nonlinear algebraic equations. The solution method employed reduces the computational effort drastically compared to time solution methods for nonlinear systems, which makes it possible to obtain a more realistic model by the inclusion of all blades around the disk, disk itself and all friction dampers since in general system parameters are not identical throughout the geometry. The validation of the method is demonstrated by comparing the results obtained in this study with those given in literature and also with results obtained by time domain analysis. In the case studies presented the effect of friction damper parameters on vibration characteristics of tuned and mistuned bladed disk systems is studied by using a 20 blade system. It is shown that the method presented can be used to find the optimum friction damper values in a bladed disk assembly.

High-fidelity calculation of modal damping caused by friction at blade roots for single blades and tuned bladed disc assemblies

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020

A method for the analysis of amplitude-dependent modal damping factors is developed for the cases when the energy dissipation is caused by the micro-slip motion at friction contacts of blade root joints. The modal damping at root joints for a lone blade and for tuned bladed disc assemblies is studied. Large three-dimensional finite element models and detailed description of friction contacts by surface-to-surface friction contact elements at contact interfaces of the root joints are used for the calculations. The method allows using available finite element packages and is based on the direct calculation of the energy dissipated at root joints for prescribed levels of vibration amplitudes. The method takes into account the nonlinear dependency of the modal damping factors on the vibration level. The numerical studies of the dependency of modal damping factors on the vibration amplitudes, rotation speed, and contact interface parameters are performed for different families of modes a...

Complex non-linear modal analysis for mechanical systems: Application to turbomachinery bladings with friction interfaces

Journal of Sound and Vibration, 2009

A method for modal analysis of non-linear and non-conservative mechanical systems is proposed. In particular, dry-friction non-linearities are considered although the method is not restricted to these. Based on the concept of complex non-linear modes, eigensolutions are written as generalized Fourier series and the eigenproblem is then formulated in the frequency-domain. An alternating frequency-time domain method is used for the calculation of implicit non-linear forces. A two degrees-of-freedom example featuring dry-friction illustrates the method and highlights the effects of dissipation on modal parameters. The stabilizing effects of friction in presence of negative damping in the system are also addressed.

On the choice of contact parameters for the forced response calculation of a bladed disk with underplatform dampers

Journal of the Global Power and Propulsion Society

Underplatform dampers (UPDs) are still in use to reduce the vibration amplitude of turbine blades and to shift the position of resonant frequencies. The dynamics of blades with UPDs is nonlinear and the analysis is challenging from both the experimental and the numerical point of view. A key point in obtaining a predictive numerical tool is the choice of the correct contact parameters (contact stiffness and friction coefficient) that are required as input to the contact model. The paper presents different approaches to choose these parameters: the contact stiffness in normal and tangential direction are both calculated and measured. The calculation is based on the analytical models in literature, the measurements are carried out on a dedicated test rig. The friction coefficient is also measured. Test results of the forced response of the same bladed disk with UPDs are available for each blade, they come from an experimental campaign under controlled excitation and centrifugal force....