Research Paper: Immune Checkpoint Molecules in Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System (original) (raw)

Abstract

1. Department of Pathology, Hematology Research Center, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran. 2. Department of Pathology, Cancer Prevention Research Center, Isfahan University of Medical Science, Isfahan, Iran. 3. Department of Pathology, Molecular Pathology and Cytogenetics Division, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran. 4. Department of Pathology, Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran. 5. Department of Pathology, Faculty of Medicine, Kerman University of Medical Science, Kerman, Iran. 6. Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (24)

  1. Ahmadzadeh, M., Johnson, L. A., Heemskerk, B., Wunderlich, J. R., Dudley, M. E., & White, D. E., et al. (2009). Tumor antigen- specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood, The Journal of the American Society of Hematology, 114(8), 1537-44. [DOI:10.1182/ blood-2008-12-195792]
  2. Alame, M., Pirel, M., Costes-Martineau, V., Bauchet, L., Fabbro, M., & Tourneret, A., et al. (2019). Characterisation of tumour microenvironment and immune checkpoints in primary cen- tral nervous system diffuse large B cell lymphomas. Virchows Archiv, 476, 891-902. [DOI:10.1007/s00428-019-02695-6] [PMID]
  3. Ansell, S. M., Lesokhin, A. M., Borrello, I., Halwani, A., Scott, E. C., & Gutierrez, M., et al. (2015). PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. New England Jour- nal of Medicine, 372(4), 311-9. [DOI:10.1056/NEJMoa1411087] [PMID] [PMCID]
  4. Atanackovic, D., & Luetkens, T. (2018). Biomarkers for checkpoint inhibition in hematologic malignancies. Seminars in Cancer Bi- ology, 52(2), 198-206. [DOI:10.1016/j.semcancer.2018.05.005] [PMID]
  5. Berghoff, A. S., Ricken, G., Widhalm, G., Rajky, O., Hainfell- ner, J. A., & Birner, P., et al. (2014). PD1 (CD279) and PD-L1 (CD274, B7H1) expression in Primary Central Nervous Sys- tem Lymphomas (PCNSL). Clinical Neuropathology, 33(1), 42-9. [DOI:10.5414/NP300698] [PMID]
  6. Brahmer, J. R., Tykodi, S. S., Chow, L. Q., Hwu, W-J., Topalian, S. L., & Hwu, P., et al. (2012). Safety and activity of anti-PD-L1 an- tibody in patients with advanced cancer. New England Journal of Medicine, 366(26), 2455-65. [DOI:10.1056/NEJMoa1200694] [PMID] [PMCID]
  7. Callahan, M. K., & Wolchok, J. D. (2013). At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. Jour- nal of Leukocyte Biology, 94(1), 41-53. [DOI:10.1189/jlb.1212631] [PMID] [PMCID]
  8. Chapuy, B., Roemer, M. G., Stewart, C., Tan, Y., Abo, R. P., & Zhang, L., et al. (2016). Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood, The Journal of the American Society of Hematology, 127(7), 869-81. [DOI:10.1182/blood-2015-10-673236] [PMID] [PMCID]
  9. Chen, B. J., Chapuy, B., Ouyang, J., Sun, H. H., Roemer, M. G., & Xu, M. L., et al. (2013). PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associ- ated malignancies. Clinical Cancer Research, 19(13), 3462-73. [DOI:10.1158/1078-0432.CCR-13-0855] [PMID] [PMCID]
  10. Ding, W., LaPlant, B. R., Call, T. G., Parikh, S. A., Leis, J. F., & He, R., et al. (2017). Pembrolizumab in patients with CLL and Rich- ter transformation or with relapsed CLL. Blood, The Journal of the American Society of Hematology, 129(26), 3419-27. [DOI:10.1182/ blood-2017-02-765685] [PMID] [PMCID]
  11. Edwards, J., Wilmott, J. S., Madore, J., Gide, T. N., Quek, C., & Tasker, A., et al. (2018). CD103+ tumor-resident CD8 + T cells are associated with improved survival in immunotherapy- naïve melanoma patients and expand significantly during anti-PD-1 treatment. Clinical Cancer Research, 24(13), 3036-45. [DOI:10.1158/1078-0432.CCR-17-2257] [PMID]
  12. Gatalica, Z., Snyder, C., Maney, T., Ghazalpour, A., Holterman, D. A., & Xiao, N., et al. (2014). Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiology and Prevention Biomarkers, 23(12), 2965-70. [DOI:10.1158/1055-9965.EPI-14- 0654] [PMID]
  13. Jaffe, E. S., Arber, D. A., Campo, E., Harris, N. L., & Quin- tanilla-Fend, L. (2016). Hematopathology e-book. El- sevier Health Sciences. https://books.google.com/ books?id=BKuODAAAQBAJ&dq
  14. Kantekure, K., Yang, Y., Raghunath, P., Schaffer, A., Woetmann, A., & Zhang, Q., et al. (2012). Expression patterns of the im- munosuppressive proteins PD-1/CD279 and PD-L1/CD274 at different stages of Cutaneous T-Cell Lymphoma (CTCL)/My- cosis Fungoides (MF). The American Journal of Dermatopathology, 34(1), 126-8. [DOI:10.1097/DAD.0b013e31821c35cb] [PMID] [PMCID]
  15. Korfel, A., & Schlegel, U. (2013). Diagnosis and treatment of pri- mary CNS lymphoma. Nature Reviews Neurology, 9(6), 317-27. [DOI:10.1038/nrneurol.2013.83] [PMID]
  16. Miyasato, Y., Takashima, Y., Takeya, H., Yano, H., Hayano, A., & Nakagawa, T., et al. (2018). The expression of PD-1 ligands and IDO1 by macrophage/microglia in primary central nerv- ous system lymphoma. Journal of Clinical And Experimental He- matopathology, 58(2), 95-101. [DOI:10.3960/jslrt.18001] [PMID] [PMCID]
  17. Nayak, L., Iwamoto, F. M., LaCasce, A., Mukundan, S., Ro- emer, M. G., & Chapuy, B., et al. (2017). PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood, The Journal of the American Society of Hematology, 129(23), 3071-3. [DOI:10.1182/ blood-2017-01-764209] [PMID] [PMCID]
  18. July, August 2020, Volume 11, Number 4
  19. Panjwani, P. K., Charu, V., DeLisser, M., Molina-Kirsch, H., Nat- kunam, Y., & Zhao, S. (2018). Programmed death-1 ligands PD-L1 and PD-L2 show distinctive and restricted patterns of expression in lymphoma subtypes. Human Pathology, 71, 91-9. [DOI:10.1016/j.humpath.2017.10.029] [PMID]
  20. Preusser, M., Woehrer, A., Koperek, O., Rottenfusser, A., Dieck- mann, K., & Gatterbauer, B., et al. (2010). Primary central nervous system lymphoma: A clinicopathological study of 75 cases. Pathology, 42(6), 547-52. [DOI:10.3109/00313025.2010.5 08786] [PMID]
  21. Turnis, M. E., Andrews, L. P., & Vignali, D. A. (2015). Inhibi- tory receptors as targets for cancer immunotherapy. Euro- pean Journal of Immunology, 45(7), 1892-905. [DOI:10.1002/ eji.201344413] [PMID] [PMCID]
  22. Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., Rizvi, N. A., & Lesokhin, A. M., et al. (2013). Nivolumab plus ipili- mumab in advanced melanoma. The New England Journal of Medicine, 369, 122-33. [DOI:10.1056/NEJMoa1302369] [PMID] [PMCID]
  23. Yang, X. L., & Liu, Y. B. (2017). Advances in pathobiology of primary central nervous system lymphoma. Chinese Medi- cal Journal, 130(16), 1973-97. [DOI:10.4103/0366-6999.211879] [PMID] [PMCID]
  24. Zuazo, M., Gato-Cañas, M., Llorente, N., Ibañez-Vea, M., Arasanz, H., & Kochan, G., et al. (2017). Molecular mechanisms of pro- grammed cell death-1 dependent T cell suppression: relevance for immunotherapy. Annals of Translational Medicine, 5(19), 385. [DOI:10.21037/atm.2017.06.11] [PMID] [PMCID]