Evaluation of Anti-Photoaging Effects of a Novel Cosmeceutical Containing a Retinoids Mixture Using In Vitro Cell Models (original) (raw)
Related papers
Proposed mechanisms of action for retinoid derivatives in the treatment of skin aging
Journal of Cosmetic Dermatology, 2005
Skin aging (intrinsic aging) and photoaging (extrinsic aging) involve a similar process that leads to the typical creased appearance of the skin, with the progressive loss of its physical and biologic properties. Photoaging is a premature skin aging caused by longterm exposure to the ultraviolet B radiations of the sun, and is more frequently associated to skin cancer than intrinsic aging. Retinoids are natural and synthetic vitamin A derivatives. They are lipophilic molecules and penetrate the epidermis easily. Their biologically active forms can modulate gene expression by binding to nuclear receptors and then to specific DNA sequences. Because of their ability to modulate genes involved in cellular differentiation and proliferation, they appear as good candidates to treat and prevent photoaging. Hyaluronate and collagen, two major constituents of the dermis, are progressively decreased and altered during aging. Various retinoids were shown to increase their synthesis and concentration in the skin and reduce their rate of degradation. Furthermore, retinoids share a common chemical structure containing several conjugated double bonds that enable them to trap free radicals and absorb UV radiations from the sun, thereby protecting cellular targets such as DNA, lipid membranes, or proteins by preventing direct photochemical damage or UV-induced oxidative stress. Therefore, retinoids may be beneficial in treating skin aging and photoaging because of their biologic, chemical, and physical properties, which act at several levels.
2015
Skin aging is a slow multifactorial process influenced by both internal as well as external factors. Ultra-violet radiations (UV), diet, smoking and personal habits are the most common environmental factors that affect skin aging. Fat contents and fibrous proteins as collagen and elastin are core internal structural components. The direct influence of UV on elastin integrity and health is central on aging of skin especially by time. The deposition of abnormal elastic material is a major marker in a photo-aged skin. Searching for compounds that may protect against cutaneous photodamage is exceedingly valued. Retinoids and alpha hydroxy acids have been endorsed by some researchers as possible candidates for protecting and or repairing the effect of UV damaged skin. For consolidating a better system of antiand protective effects of such anti-aging agents, we evaluated the combinatory effects of various dosages of lactic acid and retinol on the dermal fibroblast’s elastin levels exposed...
Influence of retinoids on skin fibroblasts metabolism in vitro
Acta poloniae pharmaceutica
The most dangerous environmental factor for our skin condition is ultraviolet light radiation. Chronic exposition to ultraviolet light can induce epidermal atrophy, keratosis, depigmentation and dysplasia. In the dermis, UV light causes dramatic up-regulation of extracellular matrix-degrading enzymes. Matrix metalloproteinases (MMPs) are engaged in collagen, elastin and other extracellular matrix components degradation. In addition, to increase level of destructive enzymes, UV light has been shown to decrease collagen production. As a consequence of UV impact on skin, it shows signs of aging including loss of tone and elasticity, increased skin fragility, blood vessels weakness and wrinkles. The most dangerous effect of UV on skin is an increased risk of melanoma and other skin cancers. Retinoids are well known antiaging agents. For many years this vitamin has been used for the prevention and treatment of photoaging. Retinoids abolish cellular atypia, increase compacting of the stra...
British Journal of Dermatology, 2010
Skin, being exposed directly to the environment, represents a unique model for demonstrating the synergistic effects of intrinsic and extrinsic factors on the ageing process. Ultraviolet radiation (UVR) is the major factor among exogenous stressors responsible for premature skin ageing. The problem of skin ageing has captured public attention and has an important social impact. Different therapeutic approaches have been developed to treat cutaneous ageing and to diminish or prevent the negative effects of UVR. Topical retinoids represent an important and powerful class of molecules in the dermatologist's hands for the treatment of photodamaged skin. Since their introduction more than 20 years ago, topical retinoids have shown beneficial efficacy and good safety profiles in the management of photodamaged skin, and as therapeutic anti-ageing agents. This review provides a brief retrospective of the development of topical retinoids in the treatment of photodamaged skin, elucidates their mechanism of action, delineates their use and addresses clinical, pharmaceutical and regulatory issues in connection with their intended use.
Clinical, cosmetic and investigational dermatology, 2017
Natural aging of skin tissues, the addition of the cumulative action of the time and radiation exposure result in skin atrophy, wrinkles and degeneration of the extracellular matrix (ECM). The aim of the study was to investigate the beneficial effect of a combination containing retinaldehyde (RAL), delta-tocopherol glucoside (delta-TC) and glycylglycine ole-amide (GGO) and of a dermocosmetic containing the combination. The protective effect of the combination was assessed through in vitro gene expression of ultraviolet (UV)-irradiated fibroblasts. A skin aging assay using UV light on ex vivo skin samples and a clinical study conducted in 36 women aged from 35 to 55 years with a minimum of level 4 to a maximum of level 6 on the crow's feet photoscale assessed the antiaging effect of the dermocosmetic. When added to UV-irradiated fibroblasts, the combination substantially improved the ECM in activating the elastin fiber production (fibrillin 2, fibulin 1 and 5 and lysyl oxidase-li...
Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety
Clinical Interventions in Aging, 2006
Aging of skin is an intricate biological process consisting of two types. While intrinsic or chronological aging is an inevitable process, photoaging involves the premature aging of skin occurring due to cumulative exposure to ultraviolet radiation. Chronological and photoaging both have clinically differentiable manifestations. Various natural and synthetic retinoids have been explored for the treatment of aging and many of them have shown histological and clinical improvement, but most of the studies have been carried out in patients presenting with photoaged skin. Amongst the retinoids, tretinoin possibly is the most potent and certainly the most widely investigated retinoid for photoaging therapy. Although retinoids show promise in the treatment of skin aging, irritant reactions such as burning, scaling or dermatitis associated with retinoid therapy limit their acceptance by patients. This problem is more prominent with tretinoin and tazarotene whereas other retinoids mainly represented by retinaldehyde and retinol are considerably less irritating. In order to minimize these side effects, various novel drug delivery systems have been developed. In particular, nanoparticles have shown a good potential in improving the stability, tolerability and effi cacy of retinoids like tretinoin and retinol. However, more elaborate clinical studies are required to confi rm their advantage in the delivery of topical retinoids.
Advances in Dermatology and Allergology, 2019
Vitamin A is the first vitamin approved by the Food and Drug Administration as an anti-wrinkle agent that changes appearance of the skin surface and has anti-aging effects. Vitamin A is in a group of fat-soluble substances and belongs to the category of retinoids. Apart from retinol, that group includes structurally related substances with the biological properties of retinol. Since the biological activity of the substances differs, for the purpose of standardization, it is given in retinol equivalents. Vitamin A and its derivatives are among the most effective substances slowing the aging process. Retinoids regulate the cell apoptosis, differentiation and proliferation. Anti-wrinkle properties of retinoids promote keratinocytes proliferation, strengthen the protective function of the epidermis, restrain transepidermal water loss, protect collagen against degradation and inhibit metalloproteinases activity. Retinoid activity is related to high affinity for nuclear receptors: RAR-retinoid acid receptors and RXR-retinoid X receptors.
Retinoids—A unique ingredient for skin rejuvenation employing novel drug delivery systems
Journal of applied pharmaceutical science, 2024
Millions of people around the world fall within the age group of 35 and above; having fluctuating lifestyles, increased exposure to blue light, and a faster-depleting ozone layer that enhances entry of UVA and UVB rays in the skin which tends to age faster leading into collagen degradation that results in fine lines and decreased cell senescence. The goal of skin rejuvenation is to have healthy skin. Cosmeceuticals incorporating retinoids have been increasingly used over the past few years to promote collagen synthesis and rejuvenate the skin. Photo-induced and chronological aging processes are decelerated with retinoid application that endorses skin elasticity by free radical neutralization, new cell growth, and blood vessel promotion within the skin to help fight pigmentation and reduce fine lines. Retinoids are commercially available as creams and serums for topical application. Nanotechnology is used in the development of retinoids to counteract adverse reactions like skin irritation and purging to improve its stability, efficacy, and acceptability. Emerging studies on retinoids include formulating them within liposomes, solid lipid nanoparticles, nano-emulgels, and hydrogels. This review details understanding the aging process, the mechanism of action of retinoids to counterfeit aging, and the potential use of nanotechnological delivery in cosmeceuticals.
Photodermatology Photoimmunology & Photomedicine, 2007
Background: Naturally occurring antioxidants were used to regulate the skin damage caused by ultraviolet (UV) radiation because several antioxidants have demonstrated that they can inhibit wrinkle formation through prevention of matrix metalloproteinases (MMPs) and/or increase of collagen synthesis.Objective: We examined the effect of oral administration of the antioxidant mixture of vitamin C, vitamin E, pycnogenol, and evening primrose oil on UVB-induced wrinkle formation. In addition, we investigated the possible molecular mechanism of photoprotection against UVB through inhibition of collagen-degrading MMP activity or through enhancement of procollagen synthesis in mouse dorsal skin.Methods: Female SKH-1 hairless mice were orally administrated the antioxidant mixture (test group) or vehicle (control group) for 10 weeks with UVB irradiation three times a week. The intensity of irradiation was gradually increased from 30 to 180 mJ/cm2. Microtopographic and histological assessment of the dorsal skins was carried out at the end of 10 weeks to evaluate wrinkle formation. Western blot analysis and EMSA were also carried out to investigate the changes in the balance of collagen synthesis and collagen degradation.Results: Our antioxidant mixture significantly reduced UVB-induced wrinkle formation, accompanied by significant reduction of epidermal thickness, and UVB-induced hyperplasia, acanthosis, and hyperkeratosis. This antioxidant mixture significantly prevented the UVB-induced expressions of MMPs, mitogen-activated protein (MAP) kinase, and activation of activator protein (AP)-1 transcriptional factor in addition to enhanced type I procollagen and transforming growth factor-β2 (TGF-β2) expression.Conclusion: Oral administration of the antioxidant mixture significantly inhibited wrinkle formation caused by chronic UVB irradiation through significant inhibition of UVB-induced MMP activity accompanied by enhancement of collagen synthesis.
Modern approach to topical treatment of aging skin
Collegium antropologicum, 2010
The main processes involved in skin aging are intrinsic and extrinsic. Apart from them, so called stochastic aging connotes cell damage caused by metabolic processes, free radicals and cosmic irradiation. The clinical expression of intrinsic aging include smooth, dry, and thinned skin with accentuated expression lines. It is inevitable and time dependent. Extrinsically aged skin shows signs of photodamage which include appearance of wrinkles, pigmented lesions, actinic keratoses and patchy hypopigmentations. Therapeutic modalities imply photoprotection with sunscreens that prevent sunburns and block ultraviolet irradiation. Other modalities include use of retinoids which regulate gene transcription with subsequent cellular differentiation and proliferation. The topical and peroral administration of network antioxidants, such as vitamin E and C, coenzyme Q10, alpha-lipoic acid and glutathione, enhance antiaging effect. The other antioxidants such as green tea, dehydroepiandrosterone,...