Activation and inactivation of thyroid hormone by deiodinases: Local action with general consequences (original) (raw)

Local activation and inactivation of thyroid hormones: the deiodinase family

Molecular and Cellular Endocrinology, 1999

Tissue-specific activation and inactivation of ligands of nuclear receptors which belong to the steroid-retinoid-thyroid hormone superfamily of trancsription factors represents an important principle of development-and tissue-specific local modulation of hormone action. Recently, several enzyme families have been identified which act as 'guardians of the gate' of ligand-activated transcription modulation. Three monodeiodinase isoenzymes which are involved in activation the 'prohormone' L-thyroxine (T4), the main secretory product of the thyroid gland, have been identified, characterized, and cloned. Both, type I and type II 5%-deiodinase generate the thyromimetically active hormone 3,3%,5-triiodothyronine (T3) by reductive deiodination of the phenolic ring of T4. Inactivation of T4 and its product T3 occurs by deiodination of iodothyronines at the tyrosyl ring. This reaction is catalyzed both the type III 5-deiodinase and also by the type I enzyme, which has a broader substrate specificity. The three deiodinases appear to constitute a newly discovered family of selenocysteine-containing proteins and the presence of selenocysteine in the protein is critical for enzyme activity. Whereas the selenoenzyme characteristics of the type I and type III deiodinases are definitively established some controversy still exists for the type II 5%-deiodinase in mammals. The mRNA probably encoding the type II 5%-deiodinase subunit is markedly longer than those of the two other deiodinases and its selenocysteine-insertion element is located more than 5 kB downstream of the UGA-codon in the 3%-untranslated region. The three deiodinase isoenzymes show a distinct development-and tissue-specific pattern of expression, operate at individual optimal substrate levels, are differently regulated and modulated by hormones, cytokines, signaling pathways, natural factors, and pharmaceuticals. Whereas circulating T3 mainly originates from hepatic production via the type I 5%-deiodinase, the local cellular thyroid hormone concentration in various tissues including the central nervous system is controlled by complex para-, auto-, and intracrine interactions of all three deiodinases. Local thyroid hormone availability is further modulated by conjugation reactions of the phenolic 4%-OH-group of iodothyronines, which also inactivate the thyroid hormones.

Hepatic deiodinase activity is dispensable for the maintenance of normal circulating thyroid hormone levels, but not for thyroid hormone-dependent gene expression

GBM Annual Fall meeting Berlin/Potsdam 2005, 2005

Thyroid hormone (TH) homeostasis depends on peripheral activation and inactivation of iodothyronines by selenoenzymes of the deiodinase (Dio) family. We genetically inactivated hepatic selenoenzyme expression, including Dio1, in order to determine the contribution of hepatic Dio to circulating TH levels. Serum levels of TSH, total T 4 , and total T 3 were not different from controls. We measured Dio1 and Dio2 in kidney, skeletal muscle, heart, brown adipose tissue, and brain, but did not find compensatory up-regulation in these tissues. Finally, we determined expression in the liver of the following T 3 target genes: Spot14, a-glycerophosphate dehydrogenase (aGPD), and malic enzyme (ME). On the transcript level, both Spot14 and aGPD were reduced in Dio-deficient liver to about 60-70% of controls. However, mRNA and activity of ME were significantly increased in the same mice. Together, our results indicate that hepatic Dio1 activity is not absolutely required to sustain the euthyroid state in mice.

Hepatic deiodinase activity is dispensable for the maintenance of normal circulating thyroid hormone levels in mice

Biochemical and Biophysical Research Communications, 2005

Thyroid hormone (TH) homeostasis depends on peripheral activation and inactivation of iodothyronines by selenoenzymes of the deiodinase (Dio) family. We genetically inactivated hepatic selenoenzyme expression, including Dio1, in order to determine the contribution of hepatic Dio to circulating TH levels. Serum levels of TSH, total T 4 , and total T 3 were not different from controls. We measured Dio1 and Dio2 in kidney, skeletal muscle, heart, brown adipose tissue, and brain, but did not find compensatory up-regulation in these tissues. Finally, we determined expression in the liver of the following T 3 target genes: Spot14, a-glycerophosphate dehydrogenase (aGPD), and malic enzyme (ME). On the transcript level, both Spot14 and aGPD were reduced in Dio-deficient liver to about 60-70% of controls. However, mRNA and activity of ME were significantly increased in the same mice. Together, our results indicate that hepatic Dio1 activity is not absolutely required to sustain the euthyroid state in mice.

Role of the Iodothyronine Deiodinases in the Physiology and Pathophysiology of Thyroid Hormone Action

European Thyroid Journal, 2012

such as the hedgehog proteins, FoxO3, or the wnt/ ␤ catenin pathway together with the actions of thyroid hormone transporters, direct adjustments of nuclear receptor-bound T3 which in turn can control the balance between cellular proliferation and differentiation. Their actions provide dynamic flexibility to what appears on the surface to be a very static hormonal system.

Type 3 Deiodinase Deficiency Results in Functional Abnormalities at Multiple Levels of the Thyroid Axis

Endocrinology, 2007

The type 3 deiodinase (D3) is a selenoenzyme that inactivates thyroid hormones and is highly expressed during development and in the adult central nervous system. We have recently observed that mice lacking D3 activity (D3KO mice) develop perinatal thyrotoxicosis followed in adulthood by a pattern of hormonal levels that is suggestive of central hypothyroidism. In this report we describe the results of additional studies designed to investigate the regulation of the thyroid axis in this unique animal model. Our results demonstrate that the thyroid and pituitary glands of D3KO mice do not respond appropriately to TSH and TRH stimulation, respectively. Furthermore, after induction of severe hypothyroidism by antithyroid treatment, the rise in serum TSH in D3KO mice is only 15% of that observed in wild-type mice. In addition, D3KO animals rendered severely hypothyroid fail to show the expected increase in prepro-TRH mRNA in the paraventricular nucleus of the hypothalamus. Finally, trea...

Deiodinases and the Three Types of Thyroid Hormone Deiodination Reactions

Endocrinology and Metabolism, 2021

Thyroid hormone (TH) signaling is strictly regulated by iodothyronine deiodinase activity, which both preserves the circulating levels of the biologically active triiodothyronine (T3) and regulates TH homeostasis at the local level, in a cell- and time-dependent manner. Three deiodinases have been identified—namely iodothyronine deiodinase 1 (DIO1), DIO2, and DIO3—that differ in their catalytic properties and tissue distribution. The deiodinases represent a dynamic system that changes in the different stages of life according to their functions and roles in various cell types and tissues. Deiodinase activity at the tissue level permits cell-targeted fine regulation of TH homeostasis, mediating the activation (DIO1 and DIO2) and inactivation (DIO3) of THs. Deiodinase homeostasis is the driving force that leads T3-target cells towards customized TH signaling, which takes into account both the hormonal circulating levels and the tissue-specific response. This review analyzes the comple...

Distinct Tissue-Specific Roles for Thyroid Hormone Receptors β and α1 in Regulation of Type 1 Deiodinase Expression

Molecular Endocrinology, 2001

Type 1 deiodinase (D1) metabolizes different forms of thyroid hormones to control levels of T3, the active ligand for thyroid hormone receptors (TR). The D1 gene is itself T3-inducible and here, the regulation of D1 expression by TRα1 and TRβ, which act as T3-dependent transcription factors, was investigated in receptor-deficient mice. Liver and kidney D1 mRNA and activity levels were reduced in TRβ−/− but not TRα1−/− mice. Liver D1 remained weakly T3 inducible in TRβ–/– mice whereas induction was abolished in double mutant TRα1–/–TRβ–/– mice. This indicates that TRβ is primarily responsible for regulating D1 expression whereas TRα1 has only a minor role. In kidney, despite the expression of both TRα1 and TRβ, regulation relied solely on TRβ, thus revealing a marked tissue restriction in TR isotype utilization. Although TRβ and TRα1 mediate similar functions in vitro, these results demonstrate differential roles in regulating D1 expression in vivo and suggest that tissue-specific fa...

Deiodinases in thyroid tumorigenesis

Endocrine-Related Cancer

The three deiodinase selenoenzymes are key regulators of intracellular thyroid hormone (TH) levels. The two TH-activating deiodinases (type 1 deiodinase and type 2 deiodinase (D2)) are normally expressed in follicular thyroid cells and contribute to overall TH production. During thyroid tumorigenesis, the deiodinase expression profile changes to customize intracellular TH levels to different requirements of cancer cells. Differentiated thyroid cancers overexpress the TH-inactivating type 3 deiodinase (D3), likely to reduce the TH signaling within the tumor. Strikingly, recent evidence suggests that during the late stage of thyroid tumorigenesis, D2 expression raises and this, together with a reduction in D3 expression levels, increases TH intracellular signaling in dedifferentiated thyroid cancers. These findings call into question the different functions of TH in the various stages of thyroid cancers.