MEMS Test Bench and its Uncertainty Analysis for Evaluation of MEMS Mirrors (original) (raw)

MEMS Mirror Manufacturing and Testing for Innovative Space Applications

arXiv: Instrumentation and Methods for Astrophysics, 2020

In the framework of the GLARE-X (Geodesy via LAser Ranging from spacE X) project, led by INFN and funded for the years 2019-2021, aiming at significantly advance space geodesy, one shows the initial activities carried out in 2019 in order to manufacture and test adaptive mirrors. This specific article deals with manufacturing and surface quality measurements of the passive substrate of 'candidate' MEMS (Micro-Electro-Mechanical Systems) mirrors for MRRs (Modulated RetroReflectors); further publications will show the active components. The project GLARE-X was approved by INFN for the years 2019-2021: it involves several institutions, including, amongst the other, INFN-LNF and FBK. GLARE-X is an innovative R&D activity, whose at large space geodesy goals will concern the following topics: inverse laser ranging (from a laser terminal in space down to a target on a planet), laser ranging for debris removal and iterative orbit correction, development of high-end ToF (Time of Flig...

MECHATRONIC APPROACH IN PRECISION MEASUREMENTS

This paper deals with a new application of mechatronic means for precision mechanics, usually used in precision instrumentation and measurement equipment. Angle calibration means have been developed using mechatronic elements. Mechatronic arrangements for systematic error correction in mechatronic positioning systems and information - measuring systems are explained pointing out the main advantages of such systems applied for specific purposes.

Fabrication of mems devices – a scanning micro mirror case study

TecnoLógicas

This paper presents the working principle, design, and fabrication of a silicon-based scanning micromirror with a new type of action mechanism as an example of MEMS (Micro-Electro-Mechanical Systems). Micromirrors can be found in barcode readers as well as micro-projectors, optical coherence tomography, or spectrometers’ adjustable filters. The fabrication process of the device prompted us to describe and discuss the problems related to the manufacture of MEMS. The article starts with some terminology and a brief introduction to the field of microsystems. Afterwards, the concept of a new scanning micromirror is explained. The device is operated by two pairs of thermal bimorphs. A special design enables to maintain a constant distance from the center of the mirror to the light source during the scanning process. The device was implemented in a one degree-of-freedom micromirror and a two degree-of-freedom micromirror. The fabrication process of both types is described. For each case, ...