Point Dilution Tracer Test to Assess Slow Groundwater Flow in an Auxiliary Karst System (Lake of Fontaine de Rivîre, Belgium) (original) (raw)
Related papers
Hydrogeology Journal
The unsaturated zone of karst aquifers influences the dynamics and the chemistry of water. Because of a lack of direct access, other than via caves, flows in the aquifer matrix and the smallest conduits remain poorly characterized. The few artificial underground structures in the unsaturated karst provide a rare opportunity to study the variety of flow processes. At the low noise underground research laboratory (Laboratoire Souterrain à Bas Bruit, LSBB) in Rustrel (France), 12 variables (temperature, pH, electrical conductivity, alkalinity, major anions and cations, total organic carbon) have been monitored on 12 perennial or temporary flows and leakages over a 10-year period covering contrasting climatic periods. This unique dataset of 1,135 samples has been used to discriminate, identify, and rank the processes associated with the hydrochemical variability of these different types of flows. A principal component analysis and a hierarchical cluster analysis, using mean values and standard deviation of the flow along the principal components, were performed. The results indicate that seasonal variability, mean water residence time, and the depth of acquisition of the chemical characteristics are the main factors of the variability of chemistry at the monitored flow points. Distinguished clusters highlight the great diversity of flows and processes occurring in the fine pathways that may be neighboring the large and structured fractures and conduits. Long-term monitoring with various climatic conditions appears to be a useful tool for assessing this diversity.
Hydrogeology Journal, 2008
In 1998 and 1999, two multi-tracer experiments were conducted in the artesian karst aquifer of the mineral springs of Stuttgart, Germany. The breakthrough curves (BTCs) monitored at the springs showed very long tails or developed plateau-like concentration levels for more than 200 days. Initially, this observation was qualitatively explained by exchange between cavities with stagnant water and the active conduits. Since then, a new analytical solution for tracer transport in karst aquifers has become available, the “two-region non-equilibrium model” (2RNE), which assumes the presence of mobile and immobile fluid regions, and mass transfer between these two regions. The experiments were thus revisited, and it was possible to provide a more quantitative explanation of the observed behaviour. The new model simulated all BTCs very well, thus confirming the earlier qualitative explanation. The prolonged BTCs can be attributed to intermediate storage in cavities containing quasi-immobile groundwater, and slow release into active fractures and conduits. The results also demonstrate that karst aquifers are not always fast-flushing systems, but contaminants can sometimes remain in immobile fluid regions for long periods.
Hydrochemistry, a tool for understanding karst groundwater flows
2014
Karst is a highly heterogeneous medium (i.e. properties vary from one point to another one), and can be studied by variations of water chemical composition, which reflect in space and time differences in origin (runoff on impervious media, diffuse seepage, inflows from evaporites...) or residence time throughout the various aquifer compartments (soil, epikarst, vadose and saturated zones. This natural background is supplemented by anthropogenic inputs (domestic, urban or industrial wastes, leachates from agricultural soils and livestock by-products...). Any natural (cave, chiasm) or artificial (tunnel, mine) penetrable gallery is a means of observation and sampling, at least of infiltration water, and sometimes of water from the saturated zone. Several cave sites in Europe provide examples for understanding the behavior of karst flows, both through the vadose and the saturated zones.
Hydrochemical characterization of the water dynamics of a karstic system
International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1991
. Hydrochemical characterization of the water dynamics of a karstic system. J. Hydrol., 121: 10.?~117. Chemical analyses have been carried out in the Foussoubie karstic system (France) to understand the origin and the circulation of its water flow. These analyses were made during two different time scales, a whole hydrological cycle, and a flood. The evolution of the chemical composition of the water and particularly the bicarbonate/calcium ratio permit the identification of the kind of infiltration which contributes to the subterranean flow. A qualitative model has been set up to describe the degree of the contribution of infiltration to subterranean discharge. techniques generally require important equipment and maintenance. Thus, for inaccessible systems, it is necessary to utilize other techniques. As chemical elements can be considered as natural tracers Mfiller, 1979: Miiller and, hydrochemistry permits an understanding of water circulation . This study has been carried out with the aim of understanding the origin and circulation pattern of water flow in the Foussoubie karstic system (France) by
Multitracer Test Approach to Characterize Reactive Transport in Karst Aquifers
Ground Water, 2007
A method to estimate reactive transport parameters as well as geometric conduit parameters from a multitracer test in a karst aquifer is provided. For this purpose, a calibration strategy was developed applying the two-region nonequilibrium model CXTFIT. The ambiguity of the model calibration was reduced by first calibrating the model with respect to conservative tracer breakthrough and later transferring conservative transport parameters to the reactive model calibration. The reactive transport parameters were only allowed to be within a defined sensible range to get reasonable calibration values. This calibration strategy was applied to breakthrough curves obtained from a large-scale multitracer test, which was performed in a karst aquifer of the Swabian Alb, Germany. The multitracer test was conducted by the simultaneous injection of uranine, sulforhodamine G, and tinopal CBS-X. The model succeeds to represent the tracer breakthrough curves (TBCs) of uranine and sulforhodamine G and verifies that tracer-rock interactions preferably occur in the immobile fluid region, although the fraction of this region amounts to only 3.5% of the total water. However, the model failed to account for the long tailing observed in the TBC of tinopal CBS-X. Sensitivity analyses reveal that model results for the conservative tracer transport are most sensitive to average velocity and volume fraction of the mobile fluid region, while dispersion and mass transfer coefficients are least influential. Consequently, reactive tracer calibration allows the determination of sorption sites in the mobile and immobile fluid region at small retardation coefficients.
Journal of Hydrology, 2016
This paper presents the modelling results of several tracer-tests performed in the cave system of Han-sur-Lesse (South Belgium). In Han-sur-Lesse, solute flows along accessible underground river stretches and through flooded areas that are rather unknown in terms of geometry. This paper focus on the impact of those flooded areas on solute transport and their dimensioning. The program used (Onedimensional Transport with Inflow and Storage: OTIS) is based on the two-region non equilibrium model that supposes the existence of an immobile water zone along the main flow zone in which solute can be caught. The simulations aim to replicate experimental breakthrough curves (BTCs) by adapting the main transport and geometric parameters that govern solute transport in karst conduits. Furthermore, OTIS allows a discretization of the investigated system, which is particularly interesting in systems presenting heterogeneous geometries. Simulation results show that transient storage is a major process in flooded areas and that the crossing of these has a major effect on the BTCs shape. This influence is however rather complex and very dependent of the flooded areas geometry and transport parameters. Sensibility tests performed in this paper aim to validate the model and show the impact of the parametrization on the BTCs shape. Those tests demonstrate that transient storage is not necessarily transformed in retardation. Indeed, significant tailing effect is only observed in specific conditions (depending on the system geometry and/or the flow) that allow residence time in the storage area to be longer than restitution time. This study ends with a comparison of solute transport in river stretches and in flooded areas.