Partial reconstitution of V(D)J rearrangement and lymphocyte development in RAG-deficient mice expressing inducible, tetracycline-regulated RAG transgenes (original) (raw)

Molecular Immunology, 2004

Abstract

Previously, we described a tetracycline-based autoregulatory system for inducible gene expression in mammalian cells and transgenic mice [Proc. Natl. Acad. Sci. U.S.A. 92 (1995) 6522]. We have tested the ability of this system to drive functional expression in vivo of the V(D)J recombination activating genes, RAG1 and RAG2. In induced transgenic mice, transgenic RAG1 and RAG2 mRNA is observed in thymus and spleen, and expression of both transgenes on the RAG1 or RAG2 knockout backgrounds allows partial, inducible, lymphocyte reconstitution. In thymus and peripheral lymphoid organs of reconstituted animals, cells expressing CD4 and/or CD8 on their surface, also express CD3 and TCR beta chain. In these animals, V(D)J rearrangements are detected in thymus, lymph nodes, and spleen at the TRB locus, and in thymus and lymph nodes at the TRD locus. At the TRA locus, broken ends at V(D)J recombination signals are detected only in thymus, as are reciprocal signal joint products derived from deletional rearrangement. T cell reconstitution occurs in these animals whether they are induced in utero during development, or shortly after birth. A low level of B cell reconstitution is also observed. B220+IgM+ cells are observed in spleen only in induced animals, and rearrangements at IGH and IGK loci are detected in bone marrow and spleen. Broken signal ends at the IGK locus, are not detected in peripheral lymphoid organs. Inducible reconstitution of normal levels of serum immunoglobulin, including heavy chain class switch isotype variants is also observed in these animals. Further, these transgenes do not appear to interfere with lymphocyte development mediated by functionally rearranged TRB chain or IGH chain transgenes in RAG-deficient animals. These mice provide a unique system for the inducible activation of V(D)J recombination and the development of primary lymphocytes.

David Schatz hasn't uploaded this paper.

Let David know you want this paper to be uploaded.

Ask for this paper to be uploaded.