Heat-Transfer Enhancement of Nanofluids in a Car Radiator Izbolj (original) (raw)
Related papers
Heat-transfer enhancement of nanofluids in a car radiator
Materiali in tehnologije, 2018
In recent times, enhancing the efficiency of automobiles has become very important. As part of this effort, increasing the efficiency of the heat transfer in the radiator of an automobile is also crucial. The present approach involves an addition of nanoparticles to the cooling liquid. Most of the current results were obtained using a few types of nanoparticles. Only a limited amount of work involved hybrid nanofluids including several types of nanoparticles. Multi-walled carbon nanotubes (MWCNT) were used along with aluminium-oxide nanoparticles to form a nanofluid with the base fluid (ethylene glycol (EG) + distilled water (DW)-1:1 ratio) having volume concentrations of (0.03, 0.06, 0.09 and 0.12) %. The characterization of the nanoparticles was carried out. The experiments were carried out at inlet temperatures of 40-75°C, with increments of 5°C. The volume flow rate was varied from 0.6 m 3 /h to 0.96 m 3 /h, with increments of 0.12 m 3 /h. An increase in the heat transfer of 35 % was achieved.
Study of Heat Transfer Characteristics of Nanofluids in an Automotive Radiator
IOP Conference Series: Materials Science and Engineering, 2018
This paper presents an experimental study on heat transfer using nanofluid as coolants in engines. Previous studies shows that Al2O3 is found to be more effective in heat transfer due to its high conductive property which is found to increase with concentration. Particles having diameter in the range 10-3 to 10-6 m have low thermal conductivities and cause clogging in the flow section along with significant friction and are highly unstable in solution. Nanoparticles on the other hand are easily dispersed and cause minimal clogging or friction in the flow. In the present work, ethylene glycol-water solution is taken as a base fluid for nanoparticle dispersion. The ratio of water to ethylene glycol used is 80:20 and it has been noted out that heat conduction improved with increasing fraction of ethylene glycol. The experiments were conducted with flow rate of 4,5,6 and 7 L/min and the air flow rate inside the duct was kept constant at 4.9 m/s. The temperature of water in the reservoir is kept at 70°C. The nanoparticles used in this experiment are Cu and TiO2 having particle size less than 80nm. Result shows that there is an improvement of 24.5% in the overall heat transfer coefficient and there was also an increase of 13.9% in the heat transfer rate compared to the base fluid (80:20 Water: EG solution).
In the development of the many modern technology the primary challenge is thermal management. If we are looking towards the automobile sector the thermal management is the most difficult challenge. Nanofluids are suspension of metallic or nonmetallic nanoparticles in the base fluid; it can be used to increase the heat transfer rate of various applications such as internal cooling system of gas turbine blades, cooling system for automobile engine. This paper contains the literature survey which gives the techniques to implementation of the nanofluids in the car radiator for the cooling of engine.
Journal of Nanotechnology in Engineering and Medicine, 2014
In the present study, the forced convective heat transfer performance of two different nanofluids, namely, Al2O3-water and CNT-water has been studied experimentally in an automobile radiator. Four different concentrations of nanofluid in the range of 0.15–1 vol. % were prepared by the additions nanoparticles into the water as base fluid. The coolant flow rate is varied in the range of 2 l/min–5 l/min. Nanocoolants exhibit enormous change in the heat transfer compared with the pure water. The heat transfer performance of CNT-water nanofluid was found to be better than Al2O3-water nanocoolant. Furthermore, the Nusselt number is found to increase with the increase in the nanoparticle concentration and nanofluid velocity.
In this paper, forced convective heat transfer in a water based nanofluid has experimentally been compared to that of pure water in an automobile radiator. Five different concentrations of nanofluids in the range of 0.1-1 vol. % have been prepared by the addition of TiO 2 nanoparticles into the water. The test liquid flows through the radiator consisted of 34 vertical tubes with elliptical cross section and air makes a cross flow inside the tube bank with constant speed. Liquid flow rate has been changed in the range of 90-120 l/min to have the fully turbulent regime. Results demonstrate that increasing the fluid circulating rate can improve the heat transfer performance. Meanwhile, application of nanofluid with low concentrations can enhance heat transfer efficiency up to 45% in comparison with pure water.
In this paper, forced convective heat transfer in a water based nanofluid has experimentally been compared to that of pure water in an automobile radiator. Five different concentrations of nanofluids in the range of 0.1-1 vol. % have been prepared by the addition of TiO 2 nanoparticles into the water. The test liquid flows through the radiator consisted of 34 vertical tubes with elliptical cross section and air makes a cross flow inside the tube bank with constant speed. Liquid flow rate has been changed in the range of 90-120 l/min to have the fully turbulent regime. Results demonstrate that increasing the fluid circulating rate can improve the heat transfer performance. Meanwhile, application of nanofluid with low concentrations can enhance heat transfer efficiency up to 45% in comparison with pure water.
IJRASET, 2021
The performance of the radiator depends on the fluid used in it as a coolant. The conventional fluids like water, ethylene glycol used as a coolant have low thermal conductivity and are not enough for transferring the heat to more extend. Nanoparticles because of their high thermal conductivity enhances the performance of the radiator when added into the base fluid. In the present work Al 2 O 3-CuO/ Water based hybrid nanofluid is used as a coolant for the CFD analysis of automobile radiator.
CFD Analysis of Heat Transfer Performance in a Car Radiator with Nanofluids as Coolants
Nanofluids are the new developed thermal fluids with enhanced thermophysical properties which can improve heat transfer performance of various applications. By introducing nanoparticles with high thermal conductivity in the car radiator coolant can enhance the effective thermal conductivity of coolant which improves the performance of cooling system. Alumina, silica and copper oxide nanoparticles with ethylene glycol-water mixture (60:40) have been used in 3-dimentional car radiator simulations to study fluid flow patterns and heat transfer performance. Heat transfer performance for ethylene glycol-water mixture based nanofluids at different nanoparticle concentrations has been studied. Heat transfer coefficients are determined by numerical simulations with varying coolant velocities. Overall heat transfer performance is found to be improved using nanofluids with high effective thermal conductivity. Results display significant increase in heat transfer performance of coolant in car radiator with an increase in the particle loading.
Applied Thermal Engineering, 2010
Water and ethylene glycol as conventional coolants have been widely used in an automotive car radiator for many years. These heat transfer fluids offer low thermal conductivity. With the advancement of nanotechnology, the new generation of heat transfer fluids called, "nanofluids" have been developed and researchers found that these fluids offer higher thermal conductivity compared to that of conventional coolants. This study focused on the application of ethylene glycol based copper nanofluids in an automotive cooling system. Relevant input data, nanofluid properties and empirical correlations were obtained from literatures to investigate the heat transfer enhancement of an automotive car radiator operated with nanofluid-based coolants. It was observed that, overall heat transfer coefficient and heat transfer rate in engine cooling system increased with the usage of nanofluids (with ethylene glycol the basefluid) compared to ethylene glycol (i.e. basefluid) alone. It is observed that, about 3.8% of heat transfer enhancement could be achieved with the addition of 2% copper particles in a basefluid at the Reynolds number of 6000 and 5000 for air and coolant respectively. In addition, the reduction of air frontal area was estimated.
Performance investigation of Automobile Radiator operated with Nanofluids Based Coolant
2014
Traditionally forced convection heat transfer in a Automobile radiator is performed to cool circulating fluid which consisted of water or a mixture of water and anti-freezing materials like ethylene glycol (EG). In this paper, the heat transfer performance of binary mixture EG+ water (50 %) volume concentration. Furthermore, different amounts of Al2O3 nano particle have been added into these base fluids and its effects on the heat transfer performance of the Automobile radiator have been determined experimentally. Air Reynolds number has been changed in the range of 84391-91290 and the fluid inlet temperature has been constant for all the experiments and mass flow rate of the coolant flowing through the radiator. The results demonstrate that nanofluids clearly enhance heat transfer compared to their own base fluid. In the best conditions, the heat transfer enhancement of about 70% compared to the base fluids has been recorded.