ITGA4 gene methylation status in chronic lymphocytic leukemia (original) (raw)

Distinct patterns of global promoter methylation in early stage chronic lymphocytic leukemia

Genes, Chromosomes and Cancer, 2014

Genomic and epigenomic studies of chronic lymphocytic leukemia (CLL) are reshaping our understanding of the disease and have provided new perspectives for a more individualized diagnosis and new potential therapeutic targets. In this study, the global promoter methylation profile was determined in highly purified B-cells from 37 (Binet stage A) CLL patients, using high-resolution methylation microarrays (27,578 CpG). Overall, the methylation pattern correlated with the major biological (ZAP-70 and CD38), and molecular (IGHV mutation) markers, distinguishing CLL cases according to IGHV mutational status. Cell adhesion molecules were enriched in the signature of unmutated (UM) versus mutated (M-) CLL. Moreover, in M-CLL CpG hyper-methylation in three genes, including SPG20, was significantly anti-correlated with the corresponding gene expression level. Finally, the correlation between the methylation pattern and clinical parameters was investigated. Notably, out of 42 methyl-probes that were significantly associated with progression free survival (PFS), hyper-methylation of SPG20 was also positively associated with PFS. These data support the notion that epigenetic changes have clinical impact in CLL and may contribute to the identification of novel candidate disease-associated genes potentially useful to predict the clinical outcome of early stage CLL patients. in Wiley Online Library (wileyonlinelibrary.com).

Genome-wide DNA methylation profiling integrated with gene expression profiling identifies PAX9 as a novel prognostic marker in chronic lymphocytic leukemia

Clinical epigenetics, 2017

In chronic lymphocytic leukemia (CLL), epigenomic and genomic studies have expanded the existing knowledge about the disease biology and led to the identification of potential biomarkers relevant for implementation of personalized medicine. In this study, an attempt has been made to examine and integrate the global DNA methylation changes with gene expression profile and their impact on clinical outcome in early stage CLL patients. The integration of DNA methylation profile (n = 14) with the gene expression profile (n = 21) revealed 142 genes as hypermethylated-downregulated and; 62 genes as hypomethylated-upregulated in early stage CLL patients compared to CD19+ B-cells from healthy individuals. The mRNA expression levels of 17 genes identified to be differentially methylated and/or differentially expressed was further examined in early stage CLL patients (n = 93) by quantitative real time PCR (RQ-PCR). Significant differences were observed in the mRNA expression of MEIS1, PMEPA1, ...

Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia

Cancer research, 2007

This study examined DNA methylation associated with acute lymphoblastic leukemia (ALL) and showed that selected molecular targets can be pharmacologically modulated to reverse gene silencing. A CpG island (CGI) microarray containing more than 3,400 unique clones that span all human chromosomes was used for large-scale discovery experiments and led to 262 unique CGI loci being statistically identified as methylated in ALL lymphoblasts. The methylation status of 10 clones encompassing 11 genes (DCC, DLC-1, DDX51, KCNK2, LRP1B, NKX6-1, NOPE, PCDHGA12, RPIB9, ABCB1, and SLC2A14) identified as differentially methylated between ALL patients and controls was independently verified. Consequently, the methylation status of DDX51 was found to differentiate patients with Band TALL subtypes (P = 0.011, Fisher's exact test). Next, the relationship between methylation and expression of these genes was examined in ALL cell lines (NALM-6 and Jurkat) before and after treatments with 5-aza-2-deoxycytidine and trichostatin A. More than a 10-fold increase in mRNA expression was observed for two previously identified tumor suppressor genes (DLC-1 and DCC) and also for RPIB9 and PCDHGA12. Although the mechanisms that lead to the CGI methylation of these genes are unknown, bisulfite sequencing of the promoter of RPIB9 suggests that expression is inhibited by methylation within SP1 and AP2 transcription factor binding motifs. Finally, specific chromosomal methylation hotspots were found to be associated with ALL. This study sets the stage for acquiring a better biological understanding of ALL and for the identification of epigenetic biomarkers useful for differential diagnosis, therapeutic monitoring, and the detection of leukemic relapse.

Epigenetic Profiling in Chronic Lymphocytic Leukemia Reveals Novel Methylation Targets

2004

CpG island methylation is an epigenetic alteration that contributes to tumorigenesis by transcriptional inactivation of genes. Little is known about the overall levels of CpG island methylation in chronic lymphocytic leukemia (CLL). To provide a baseline estimate of global aberrant methylation and identify target sequences for additional investigation, we performed Restriction Landmark Genomic Scanning on 10 CLL samples. Two methylation-sensitive landmark enzymes were used (NotI and AscI), allowing assessment of over 3000 CpG islands in each sample. Tumorderived Restriction Landmark Genomic Scanning profiles were compared with profiles from CD19-selected B cells from normal volunteers and matched normal neutrophils from 4 CLL patients. We found 2.5-8.1% (mean 4.8%) of the CpG islands in CLL samples were aberrantly methylated compared with controls, and the methylation events had a nonrandom distribution (P < 0.0001). Furthermore, we identified 193 aberrantly methylated sequences, of which 93% have CpG island characteristics and 90% have homology to genes or expressed sequences. One such gene, the G protein-coupled metabotropic glutamate receptor 7 (GRM7), possibly inhibits cyclic AMP signaling in the induction of apoptosis. Bisulfite sequencing of GRM7 confirmed extensive CpG island methylation, and treatment with 5-aza-2-deoxycytidine (decitabine) resulted in up-regulated expression of several genes in vitro with concurrent cellular depletion of DNMT1 protein. Our dual-enzyme global methylation study shows that CLL is characterized by widespread nonrandom CpG island methylation similar to other tumors and provides a panel of novel methylation targets that can be used in larger studies designed to assess impact on disease progression and survival.

Quantitative analysis of DNA methylation in chronic lymphocytic leukemia patients

ELECTROPHORESIS, 2004

Changes in the genomic DNA methylation level have been found to be closely associated with tumorigenesis. In order to analyze the relation of aberrant DNA methylation to clinical and biological risk factors, we have determined the cytosine methylation level of 81 patients diagnosed with chronic lymphocytic leukemia (CLL). The analysis was based on DNA hydrolysis followed by derivatization of the 2'-desoxyribonucleoside-3'-monophosphates with BODIPY FL EDA. Derivatives were separated by micellar electrokinetic chromatography, and laser-induced fluorescence was used for detection. We analyzed potential correlations between DNA methylation levels and numerous patient parameters, including clinical observations and biological data. As a result, we observed a significant correlation with the immunoglobulin variable heavy chain gene (VH) mutation status. This factor has been repeatedly proposed as a reliable prognostic marker for CLL, which suggests that the methylation level might be a valuable factor in determining the prognostic outcome of CLL. We are now in the process of refining our method to broaden its application potential. In this context, we show here that the oxidation of the fluorescence marker in the samples and the evaporation of methanol in the electrolytes can be prevented by a film of paraffin oil. In summary, our results thus establish capillary electrophoresis as a valuable tool for analyzing the DNA methylation status of clinical samples.

Mantle cell lymphoma displays a homogenous methylation profile: A comparative analysis with chronic lymphocytic leukemia

American Journal of Hematology, 2012

Mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL) are mature CD5 1 B-cell malignancies with different biological/clinical characteristics. We recently reported an association between different prognostic subgroups of CLL (i.e., IGHV mutated and unmutated) and genomic methylation pattern. However, the relationship between DNA methylation and prognostic markers, such as the proliferation gene expression signature, has not been investigated in MCL. We applied high-resolution methylation microarrays (27,578 CpG sites) to assess the global DNA methylation profiles in 20 MCL (10 each with high/low proliferation signature) and 30 CLL (15 poor-prognostic IGHV unmutated subset #1 and 15 good-prognostic IGHV mutated subset #4) samples. Notably, MCL and each CLL subset displayed distinct genomic methylation profiles. After unsupervised hierarchical clustering, 17/20 MCL cases formed a cluster separate from CLL, while CLL subsets #1 and #4 formed subclusters. Surprisingly, few differentially methylated genes (n 5 6) were identified between high vs. low proliferation MCL. In contrast, distinct methylation profiles were demonstrated for MCL and CLL. Importantly, certain functional classes of genes were preferentially methylated in either disease. For instance, developmental genes, in particular homeobox transcription factor genes (e.g., HLXB9, HOXA13), were more highly methylated in MCL, whereas apoptosis-related genes were enriched among targets methylated in CLL (e.g., CYFIP2, NR4A1). Results were validated using pyrosequencing, RQ-PCR and reexpression of specific genes. In summary, the methylation profile of MCL was homogeneous and no correlation with the proliferation signature was observed. Compared to CLL, however, marked differences were discovered such as the preferential methylation of homeobox genes in MCL. Am.

Methylation alteration of SHANK1 as a predictive, diagnostic and prognostic biomarker for chronic lymphocytic leukemia

Oncotarget, 2019

Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease characterized by the clonal expansion of malignant B cells. To predict the clinical course of the disease, the identification of diagnostic biomarkers is urgently needed. Aberrant methylation patterns may predict CLL development and its course, being very early changes during carcinogenesis. Our aim was to identify CLL specific methylation patterns and to evaluate whether methylation aberrations in selected genes are associated with changes in gene expression. Here, by performing a genome-wide methylation analysis, we identified several CLL-specific methylation alterations. We focused on the most altered one, at a CpG island located in the body of SHANK1 gene, in our CLL cases compared to healthy controls. This methylation alteration was successfully validated in a larger cohort including 139 CLL and 20 control in silico samples. We also found a positive correlation between SHANK1 methylation level and absolute lymphocyte count, in particular CD19+ B cells, in CLL patients. Moreover, we were able to detect gains of methylation at SHANK1 in blood samples collected years prior to diagnosis. Overall, our results suggest methylation alteration at this SHANK1 CpG island as a biomarker for risk and diagnosis of CLL, and also in the personalized quantification of tumor aggressiveness.