Metabolic mapping of the rat brain after subanesthetic doses of ketamine: potential relevance to schizophrenia (original) (raw)
Subanesthetic doses of ketamine have been shown to exacerbate symptoms in schizophrenia and to induce positive, negative, and cognitive schizophrenic-like symptoms in normal subjects. The present investigation sought to define brain regions affected by 14 Ž. subanesthetic doses of ketamine, using high resolution autoradiographic analysis of C-2-deoxyglucose 2-DG uptake and immunocyto-Ž. chemical staining for Fos-like immunoreactivity Fos-LI. Both functional mapping approaches were used because distinct and complementary information is often obtained with these two mapping methods. Ketamine, at a subanesthetic dose of 35 mgrkg, substantially increased 2-DG uptake in certain limbic cortical regions, including medial prefrontal, ventrolateral orbital, cingulate, and retrosplenial cortices. In the hippocampal formation, the subanesthetic dose of ketamine induced prominent increases in 2-DG uptake in the dentate gyrus, CA-3 stratum radiatum, stratum lacunosum moleculare, and presubiculum. Increased 2-DG uptake in response to 35 mgrkg ketamine was also observed in select thalamic nuclei and basolateral amygdala. Ketamine induced Fos-LI in the same limbic cortical regions that exhibited increased 2-DG uptake in response to the subanesthetic dose of the drug. However, no Fos was induced in some brain regions that showed increased 2-DG uptake, such as the hippocampal formation, anterioventral thalamic nucleus, and basolateral amygdala. Conversely, ketamine induced Fos in the paraventricular nucleus of the hypothalamus and central amygdala, although no effect of the drug on 2-DG uptake was apparent in these regions. In contrast to the increase in 2-DG uptake observed in select Ž. brain regions after the subanesthetic dose, an anesthetic dose of ketamine 100 mgrkg produced a global suppression of 2-DG uptake. By contrast, a robust induction of Fos-LI was observed after the anesthetic dose of ketamine that was neuroanatomically identical to that produced by the subanesthetic dose. Results of the present investigation show that anesthetic and subanesthetic doses of ketamine have pronounced effects on regional brain 2-DG uptake and induction of Fos-LI. The alterations in regional brain metabolism induced by the subanesthetic dose may be relevant to effects of ketamine to induce schizophrenic-like symptoms. q 1998 Elsevier Science B.V.