A possible explanation of the anomalous emissive probe behavior in a reactive RF plasma (original) (raw)

Abstract

Emissive probe diagnostics in saturated floating potential mode was carried out in RF plasmas of argon (Ar)-methane (CH 4) and ArCH 4-hexa methyl disiloxane (HMDSO). These plasmas are used for the deposition of diamond-like carbon (DLC) and SiO x-containing DLC films, respectively. While performing the experiments it was found that the probe characteristics had two saturation regions instead of one. The same measurements when repeated in Ar and Ar-N 2 plasmas showed a single saturation as expected. The first experiments when repeated again showed the same anomaly. The experimental findings question the validity of emissive probe diagnostics in reactive plasmas. A possible model of dust formation inside the reactive plasma is predicted and the first saturation is linked to dust. The second saturation is credited as the actual plasma potential. The concept of dust was invoked after being sure that no effects of RF and reference electrode contamination are responsible for this behavior. The results indicate that we should remain cautious when using emissive probes in reactive plasmas as they may occasionally lead to erroneous results.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (33)

  1. Langmuir I and Mott-Smith H Jr 1924 Gen. Electr. Rev. 27 449
  2. Kar R, Singh S B, Tiwari N, Barve D N, Barve S A, Chand N and Patil D S 2010 J. Phys.: Conf. Ser. 208 012137
  3. Singh S B, Chand N and Patil D S 2009 Vacuum 83 372
  4. Kemp R F and Sellen J M Jr 1966 Rev. Sci. Instrum. 37 455
  5. Smith J R, Hershkowitz N and Coakley P 1979 Rev. Sci. Instrum. 50 210
  6. Makowski M A and Emmert G A 1983 Rev. Sci. Instrum. 54 830
  7. Deb B, Roy R K and Pal A K 2003 Phys. Status Solidi a 198 111
  8. Spatenka P and Suhr H 1993 Plasma Chem. Plasma Process. 13 555
  9. Olson R A and Nordlund D R 1972 J. Appl. Phys. 43 2780
  10. Chatteron P A, Rees J A, Wu W L and Al-Assadi K 1991 Vacuum 42 489
  11. Sheehan J P, Raitses Y, Hershkowitz N, Kaganovich I and Fisch N J 2011 Phys. Plasmas 18 073501
  12. Wang J, Carlile R N, O'Hannion J F and Collins S M 1996 J. Vac. Sci. Technol. A 14 639
  13. D'Arcy R J 1974 J. Phys. D: Appl. Phys. 7 1391
  14. Oyama K 1976 Planet. Space Sci. 24 183
  15. Olson R A and Medicus G 1967 Appl. Phys. Lett. 10 27
  16. Nam C H, Hershkowitz N, Cho M H, Intrator T and Diebold D 1988 J. Appl. Phys. 63 5674
  17. Kar R, Barve S A, Singh S B, Barve D N, Chand N and Patil D S 2010 Vacuum 85 151
  18. Lee D, Ting Y H, Oksuz L and Hershkowitz N 2006 Plasma Sources Sci. Technol. 15 873
  19. Roth R M, Spears K G and Wong G 1985 Appl. Phys. Lett. 46 253
  20. Selwyn G S, Singh J and Bennet R S 1989 J. Vac. Sci. Technol. A 7 2758
  21. Yeon C K, Kim J H and Whang K W 1995 J. Vac. Sci. Technol. A 13 927
  22. Yeon C K and Whang K W 1995 J. Vac. Sci. Technol. A 13 2044
  23. Bouchoule A 1999 Dusty Plasmas, Physics, Chemistry and Technological Impacts in Plasma Processing ed A Bouchoule (New York: Wiley) pp 343-6
  24. Hayashi Y and Tachibana K 1994 Japan. J. Appl. Phys. 33 L804
  25. Goujon M, Belmonte T and Henrion G 2004 Surf. Coat. Technol. 188-189 756
  26. Deschenaux Ch 1999 J. Phys. D: Appl. Phys. 32 1876
  27. Ricci M, Dorier J L, Hollenstein C and Fayet P 2011 Plasma Process. Polym. 8 108
  28. Hollenstein Ch, Deschenaux Ch, Magni D, Grangeon F, Affolter A, Howling A A and Fayet P 1999 Frontiers in Dusty Plasmas ed Y Nakamura et al (Amsterdam: Elsevier) pp 169-76
  29. Boeuf J P and Punset C 1999 Dusty Plasmas, Physics, Chemistry and Technological Impacts in Plasma Processing ed A Bouchoule (New York: Wiley) pp 1-48
  30. Kilgore M D, Daugherty J E, Porteous R K and Graves D B 1993 J. Appl. Phys. 73 7195
  31. Boeuf J P and Pitchford L D 1995 Phys. Rev. E 51 1376
  32. Hayashi N 2001 Phys. Plasmas 8 3051
  33. Kang J, Carlile R N, O'Hanlon J F and Collins S M 1996 J. Vac. Sci. Technol. A 14 639