A possible explanation of the anomalous emissive probe behavior in a reactive RF plasma (original) (raw)
Abstract
Emissive probe diagnostics in saturated floating potential mode was carried out in RF plasmas of argon (Ar)-methane (CH 4) and ArCH 4-hexa methyl disiloxane (HMDSO). These plasmas are used for the deposition of diamond-like carbon (DLC) and SiO x-containing DLC films, respectively. While performing the experiments it was found that the probe characteristics had two saturation regions instead of one. The same measurements when repeated in Ar and Ar-N 2 plasmas showed a single saturation as expected. The first experiments when repeated again showed the same anomaly. The experimental findings question the validity of emissive probe diagnostics in reactive plasmas. A possible model of dust formation inside the reactive plasma is predicted and the first saturation is linked to dust. The second saturation is credited as the actual plasma potential. The concept of dust was invoked after being sure that no effects of RF and reference electrode contamination are responsible for this behavior. The results indicate that we should remain cautious when using emissive probes in reactive plasmas as they may occasionally lead to erroneous results.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (33)
- Langmuir I and Mott-Smith H Jr 1924 Gen. Electr. Rev. 27 449
- Kar R, Singh S B, Tiwari N, Barve D N, Barve S A, Chand N and Patil D S 2010 J. Phys.: Conf. Ser. 208 012137
- Singh S B, Chand N and Patil D S 2009 Vacuum 83 372
- Kemp R F and Sellen J M Jr 1966 Rev. Sci. Instrum. 37 455
- Smith J R, Hershkowitz N and Coakley P 1979 Rev. Sci. Instrum. 50 210
- Makowski M A and Emmert G A 1983 Rev. Sci. Instrum. 54 830
- Deb B, Roy R K and Pal A K 2003 Phys. Status Solidi a 198 111
- Spatenka P and Suhr H 1993 Plasma Chem. Plasma Process. 13 555
- Olson R A and Nordlund D R 1972 J. Appl. Phys. 43 2780
- Chatteron P A, Rees J A, Wu W L and Al-Assadi K 1991 Vacuum 42 489
- Sheehan J P, Raitses Y, Hershkowitz N, Kaganovich I and Fisch N J 2011 Phys. Plasmas 18 073501
- Wang J, Carlile R N, O'Hannion J F and Collins S M 1996 J. Vac. Sci. Technol. A 14 639
- D'Arcy R J 1974 J. Phys. D: Appl. Phys. 7 1391
- Oyama K 1976 Planet. Space Sci. 24 183
- Olson R A and Medicus G 1967 Appl. Phys. Lett. 10 27
- Nam C H, Hershkowitz N, Cho M H, Intrator T and Diebold D 1988 J. Appl. Phys. 63 5674
- Kar R, Barve S A, Singh S B, Barve D N, Chand N and Patil D S 2010 Vacuum 85 151
- Lee D, Ting Y H, Oksuz L and Hershkowitz N 2006 Plasma Sources Sci. Technol. 15 873
- Roth R M, Spears K G and Wong G 1985 Appl. Phys. Lett. 46 253
- Selwyn G S, Singh J and Bennet R S 1989 J. Vac. Sci. Technol. A 7 2758
- Yeon C K, Kim J H and Whang K W 1995 J. Vac. Sci. Technol. A 13 927
- Yeon C K and Whang K W 1995 J. Vac. Sci. Technol. A 13 2044
- Bouchoule A 1999 Dusty Plasmas, Physics, Chemistry and Technological Impacts in Plasma Processing ed A Bouchoule (New York: Wiley) pp 343-6
- Hayashi Y and Tachibana K 1994 Japan. J. Appl. Phys. 33 L804
- Goujon M, Belmonte T and Henrion G 2004 Surf. Coat. Technol. 188-189 756
- Deschenaux Ch 1999 J. Phys. D: Appl. Phys. 32 1876
- Ricci M, Dorier J L, Hollenstein C and Fayet P 2011 Plasma Process. Polym. 8 108
- Hollenstein Ch, Deschenaux Ch, Magni D, Grangeon F, Affolter A, Howling A A and Fayet P 1999 Frontiers in Dusty Plasmas ed Y Nakamura et al (Amsterdam: Elsevier) pp 169-76
- Boeuf J P and Punset C 1999 Dusty Plasmas, Physics, Chemistry and Technological Impacts in Plasma Processing ed A Bouchoule (New York: Wiley) pp 1-48
- Kilgore M D, Daugherty J E, Porteous R K and Graves D B 1993 J. Appl. Phys. 73 7195
- Boeuf J P and Pitchford L D 1995 Phys. Rev. E 51 1376
- Hayashi N 2001 Phys. Plasmas 8 3051
- Kang J, Carlile R N, O'Hanlon J F and Collins S M 1996 J. Vac. Sci. Technol. A 14 639