Review — Transport phenomena associated with cells incurring diseases (original) (raw)
Related papers
A Microfluidic System for Studying the Effects of Disturbed Flow on Endothelial Cells
Frontiers in Bioengineering and Biotechnology
Arterial endothelium experience physical stress associated with blood flow and play a central role in maintaining vascular integrity and homeostasis in response to hemodynamic forces. Blood flow within vessels is generally laminar and streamlined. However, abrupt changes in the vessel geometry due to branching, sharp turns or stenosis can disturb the laminar blood flow, causing secondary flows in the form of vortices. Such disturbed flow patterns activate pro-inflammatory phenotypes in endothelial cells, damaging the endothelial layer and can lead to atherosclerosis and thrombosis. Here, we report a microfluidic system with integrated ridge-shaped obstacles for generating controllable disturbed flow patterns. This system is used to study the effect of disturbed flow on the cytoskeleton remodeling and nuclear shape and size of cultured human aortic endothelial cells. Our results demonstrate that the generated disturbed flow changes the orientation angle of actin stress fibers and reduces the nuclear size while increases the nuclear circularity.
Biomicrofluidics, 2011
Atherosclerotic lesions occur non-randomly at vascular niches in bends and bifurcations where fluid flow can be characterized as "disturbed" (low shear stress with both forward and retrograde flow). Endothelial cells (ECs) at these locations experience significantly lower average shear stress without change in the levels of pressure or strain, which affects the local balance in mechanical stresses. Common in vitro models of atherosclerosis focus primarily on shear stress without accounting for pressure and strain loading. To overcome this limitation, we used our microfluidic endothelial cell culture model (ECCM) to achieve accurate replication of pressure, strain, and shear stress waveforms associated with both normal flow seen in straight sections of arteries and disturbed flow seen in the abdominal aorta in the infrarenal segment at the wall distal to the inferior mesenteric artery (IMA), which is associated with high incidence of atherosclerotic lesion formation. Human aortic endothelial cells (HAECs) were cultured within the ECCM under both normal and disturbed flow and evaluated for cell shape, cytoskeletal alignment, endothelial barrier function, and inflammation using immunofluorescence microscopy and flow cytometry. Results clearly demonstrate quantifiable differences between cells cultured under disturbed flow conditions, which are cuboidal with short and randomly oriented actin microfilaments and show intermittent expression of b-Catenin and cells cultured under normal flow. However, in the absence of pro-inflammatory stimulation, the levels of expression of activation markers: intra cellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), platelet endothelial cell adhesion molecule-1 (PECAM-1), and vascular endothelial cell growth factor -receptor 2 (VEGF-R2) known to be involved in the initiation of plaque formation were only slightly higher in HAECs cultured under disturbed flow in comparison to cells cultured under normal flow.
Microfluidic technology in vascular research
2009
Vascular cell biology is an area of research with great biomedical relevance. Vascular dysfunction is involved in major diseases such as atherosclerosis, diabetes, and cancer. However, when studying vascular cell biology in the laboratory, it is difficult to mimic the dynamic, three-dimensional microenvironment that is found in vivo. Microfluidic technology offers unique possibilities to overcome this difficulty. In this review, an overview of the recent applications of microfluidic technology in the field of vascular biological research will be given. Examples of how microfluidics can be used to generate shear stresses, growth factor gradients, cocultures, and migration assays will be provided. The use of microfluidic devices in studying three-dimensional models of vascular tissue will be discussed. It is concluded that microfluidic technology offers great possibilities to systematically study vascular cell biology with setups that more closely mimic the in vivo situation than those that are generated with conventional methods.
Biomicrofluidics
Extravasation of circulating cells is an essential process that governs tissue inflammation and the body's response to pathogenic infection. To initiate anti-inflammatory and phagocytic functions within tissues, immune cells must cross the vascular endothelial barrier from the vessel lumen to the subluminal extracellular matrix. In this work, we present a microfluidic approach that enables the recreation of a three-dimensional, perfused endothelial vessel formed by human endothelial cells embedded within a collagen-rich matrix. Monocytes are introduced into the vessel perfusate, and we investigate the role of luminal flow and collagen concentration on extravasation. In vessels conditioned with the flow, increased monocyte adhesion to the vascular wall was observed, though fewer monocytes extravasated to the collagen hydrogel. Our results suggest that the lower rates of extravasation are due to the increased vessel integrity and reduced permeability of the endothelial monolayer. We further demonstrate that vascular permeability is a function of collagen hydrogel mass concentration, with increased collagen concentrations leading to elevated vascular permeability and increased extravasation. Collectively, our results demonstrate that extravasation of monocytes is highly regulated by the structural integrity of the endothelial monolayer. The microfluidic approach developed here allows for the dissection of the relative contributions of these cues to further understand the key governing processes that regulate circulating cell extravasation and inflammation.
Lab on a Chip, 2009
A lab-on-a-chip application for the investigation of biochemical and mechanical response of individual endothelial cells to different fluid dynamical conditions is presented. A microfluidic flow chamber design with a tapered geometry that creates a pre-defined, homogeneous shear stress gradient on the cell layer is described and characterized. A non-intrusive, non-tactile measurement method based on micro-PIV is used for the determination of the topography and shear stress distribution over individual cells with subcellular resolution. The cellular gene expression is measured simultaneously with the shape and shear stress distribution of the cell. With this set-up the response of the cells on different pre-defined shear stress levels is investigated without the influence of variations in repetitive experiments. Results are shown on cultured endothelial cells related to the promoter activity of the shear-responsive transcription factor KLF2 driving the marker gene for green fluorescent protein.
Studying the response of aortic endothelial cells under pulsatile flow using a compact microfluidic
We describe a piezoelectric pumping system for studying the mechanobiology of human aortic endothelial cells (HAECs) under pulsatile flow in microfluidic structures. The system takes advantage of commercially available components, including pumps, flow sensors, and microfluidic channels, which can be easily integrated, programmed, and operated by cellular biologists. Proof-of-concept experiments were performed to elucidate the complex mechanotransduction processes of endothelial cells to pulsatile flow. In particular, we investigated the effect of atheroprone and atheroprotective pulsatile shear stress on endothelial cytoskeleton remodeling and distribution of β-catenin, as well as nuclear shape and size. The system is simple to operate, relatively inexpensive, portable, and controllable, providing opportunities for studying the mechanobiology of endothelial cells using microfluidic technologies.
Scientific Reports, 2014
Studying human vascular disease in conventional cell cultures and in animal models does not effectively mimic the complex vascular microenvironment and may not accurately predict vascular responses in humans. We utilized a microfluidic device to recapitulate both shear stress and O 2 levels in health and disease, establishing a microfluidic vascular model (mVM). Maintaining human endothelial cells (ECs) in healthy-mimicking conditions resulted in conversion to a physiological phenotype namely cell elongation, reduced proliferation, lowered angiogenic gene expression and formation of actin cortical rim and continuous barrier. We next examined the responses of the healthy mVM to a vasotoxic cancer drug, 5-Fluorouracil (5-FU), in comparison with an in vivo mouse model. We found that 5-FU does not induce apoptosis rather vascular hyperpermeability, which can be alleviated by Resveratrol treatment. This effect was confirmed by in vivo findings identifying a vasoprotecting strategy by the adjunct therapy of 5-FU with Resveratrol. The mVM of ischemic disease demonstrated the transition of ECs from a quiescent to an activated state, with higher proliferation rate, upregulation of angiogenic genes, and impaired barrier integrity. The mVM offers opportunities to study and predict human ECs with physiologically relevant phenotypes in healthy, pathological and drug-treated environments.
Traction Forces of Endothelial Cells under Slow Shear Flow
Biophysical Journal, 2015
Endothelial cells are constantly exposed to fluid shear stresses that regulate vascular morphogenesis, homeostasis, and disease. The mechanical responses of endothelial cells to relatively high shear flow such as that characteristic of arterial circulation has been extensively studied. Much less is known about the responses of endothelial cells to slow shear flow such as that characteristic of venous circulation, early angiogenesis, atherosclerosis, intracranial aneurysm, or interstitial flow. Here we used a novel, to our knowledge, microfluidic technique to measure traction forces exerted by confluent vascular endothelial cell monolayers under slow shear flow. We found that cells respond to flow with rapid and pronounced increases in traction forces and cell-cell stresses. These responses are reversible in time and do not involve reorientation of the cell body. Traction maps reveal that local cell responses to slow shear flow are highly heterogeneous in magnitude and sign. Our findings unveil a low-flow regime in which endothelial cell mechanics is acutely responsive to shear stress.
Scientific reports, 2017
There is growing interest in quantifying vascular cell and tissue stiffness. Most measurement approaches, however, are incapable of assessing stiffness in the presence of physiological flows. We developed a microfluidic approach which allows measurement of shear modulus (G) during flow. The design included a chamber with glass windows allowing imaging with upright or inverted microscopes. Flow was controlled gravitationally to push culture media through the chamber. Fluorescent beads were conjugated to the sample surface and imaged before and during flow. Bead displacements were calculated from images and G was computed as the ratio of imposed shear stress to measured shear strain. Fluid-structure simulations showed that shear stress on the surface did not depend on sample stiffness. Our approach was verified by measuring the moduli of polyacrylamide gels of known stiffness. In human pulmonary microvascular endothelial cells, G was 20.4 ± 12 Pa and decreased by 20% and 22% with incr...