The FAIR Funder pilot programme to make it easy for funders to require and for grantees to produce FAIR Data (original) (raw)

The FAIR Funder: A pilot programme to make it easy for funders to require and for grantees to produce FAIR Data

There is a growing acknowledgement in the scientific community of the importance of making experimental data machine findable, accessible, interoperable, and reusable (FAIR). Recognizing that high quality metadata are essential to make datasets FAIR, members of the GO FAIR Initiative and the Research Data Alliance (RDA) have initiated a series of workshops to encourage the creation of Metadata for Machines (M4M), enabling any self-identified stakeholder to define and promote the reuse of standardized, comprehensive machine-actionable metadata. The funders of scientific research recognize that they have an important role to play in ensuring that experimental results are FAIR, and that high quality metadata and careful planning for FAIR data stewardship are central to these goals. We describe the outcome of a recent M4M workshop that has led to a pilot programme involving two national science funders, the Health Research Board of Ireland (HRB) and the Netherlands Organisation for Health Research and Development (ZonMW). These funding organizations will explore new technologies to define at the time that a request for proposals is issued the minimal set of machine-actionable metadata that they would like investigators to use to annotate their datasets, to enable investigators to create such metadata to help make their data FAIR, and to develop data-stewardship plans that ensure that experimental data will be managed appropriately abiding by the FAIR principles. The FAIR Funders design envisions a data-management workflow having seven essential stages, where solution providers are openly invited to participate. The initial pilot programme will launch using existing computer-based tools of those who attended the M4M Workshop.

The FAIR Funding Model: Providing a Framework for Research Funders to Drive the Transition toward FAIR Data Management and Stewardship Practices

Data Intelligence, 2019

A growing number of research funding organizations (RFOs) are taking responsibility to increase the scientific and social impact of research output. Also reusable research data are recognized as relevant output for gaining impact. RFOs are therefore promoting FAIR research data management and stewardship (RDM) in their research funding cycle. However, the implementation of FAIR RDM still faces important obstacles and challenges. To solve these, stakeholders work together to develop innovative tools and practices. Here we elaborate on the role of RFOs in developing a FAIR funding model to support the FAIR RDM in the funding cycle, integrated with research community specific guidance, criteria and metadata, and enabling automatic assessments of progress and output from RDM. The model facilitates to create research data with a high level of FAIRness that are meaningful for a research community. To fully benefit from the model, RFOs, research institutions and service providers need to i...

From Raw Data to FAIR Data: The FAIRification Workflow for Health Research

Methods of Information in Medicine, 2020

Background FAIR (findability, accessibility, interoperability, and reusability) guiding principles seek the reuse of data and other digital research input, output, and objects (algorithms, tools, and workflows that led to that data) making them findable, accessible, interoperable, and reusable. GO FAIR - a bottom-up, stakeholder driven and self-governed initiative - defined a seven-step FAIRification process focusing on data, but also indicating the required work for metadata. This FAIRification process aims at addressing the translation of raw datasets into FAIR datasets in a general way, without considering specific requirements and challenges that may arise when dealing with some particular types of data. Objectives This scientific contribution addresses the architecture design of an open technological solution built upon the FAIRification process proposed by “GO FAIR” which addresses the identified gaps that such process has when dealing with health datasets. Methods A common FA...

COPO: a metadata platform for brokering FAIR data in the life sciences

Scientific innovation is increasingly reliant on data and computational resources. Much of today's life science research involves generating, processing, and reusing heterogeneous datasets that are growing exponentially in size. Demand for technical experts (data scientists and bioinformaticians) to process these data is at an all-time high, but these are not typically trained in good data management practices. That said, we have come a long way in the last decade, with funders, publishers, and researchers themselves making the case for open, interoperable data as a key component of an open science philosophy. In response, recognition of the FAIR Principles (that data should be Findable, Accessible, Interoperable and Reusable) has become commonplace. However, both technical and cultural challenges for the implementation of these principles still exist when storing, managing, analysing and disseminating both legacy and new data. COPO is a computational system that attempts to add...

An Open, FAIRified Data Commons: Proposal for NIH Data Commons Pilot

2017

This proposal is a response to NIH's call for creation of a Data Commons (RM-17-026). The Commons must support use cases of many stakeholders who need access to scholarly process, content, and outcomes in pursuit of knowledge. Moreover, the Commons must be flexible enough to respect researchers’ idiosyncratic workflows, yet specific enough to solve problems that researchers are trying to solve. To meet both demands, a successful Commons will provide core services that are shared across workflows, and flexible interfaces that meet the individual needs of stakeholders. By leveraging existing open tools, an expansive community network, and in-depth expertise, this collaborative team is well positioned to contribute to the Data Commons pilot and beyond.

The FAIR Guiding Principles for scientific data management and stewardship

Scientific Data, 2016

There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders-representing academia, industry, funding agencies, and scholarly publishers-have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community. Supporting discovery through good data management Good data management is not a goal in itself, but rather is the key conduit leading to knowledge discovery and innovation, and to subsequent data and knowledge integration and reuse by the community after the data publication process. Unfortunately, the existing digital ecosystem surrounding scholarly data publication prevents us from extracting maximum benefit from our research investments (e.g., ref. 1). Partially in response to this, science funders, publishers and governmental agencies are beginning to require data management and stewardship plans for data generated in publicly funded experiments. Beyond proper collection, annotation, and archival, data stewardship includes the notion of 'long-term care' of valuable digital assets, with the goal that they should be discovered and re-used for downstream investigations, either alone, or in combination with newly generated data. The outcomes from good data management and stewardship, therefore, are high quality digital publications that facilitate and simplify this ongoing process of discovery, evaluation, and reuse in downstream studies. What constitutes 'good data management' is, however, largely undefined, and is generally left as a decision for the data or repository owner. Therefore, bringing some clarity around the goals and desiderata of good data management and stewardship, and defining simple guideposts to inform those who publish and/or preserve scholarly data, would be of great utility. This article describes four foundational principles-Findability, Accessibility, Interoperability, and Reusability-that serve to guide data producers and publishers as they navigate around these obstacles, thereby helping to maximize the added-value gained by contemporary, formal scholarly digital publishing. Importantly, it is our intent that the principles apply not only to 'data' in the conventional sense, but also to the algorithms, tools, and workflows that led to that data. All scholarly digital research objects 2-from data to analytical pipelines-benefit from application of these principles, since all components of the research process must be available to ensure transparency, reproducibility, and reusability. There are numerous and diverse stakeholders who stand to benefit from overcoming these obstacles: researchers wanting to share, get credit, and reuse each other's data and interpretations; professional data publishers offering their services; software and tool-builders providing data analysis and processing services such as reusable workflows; funding agencies (private and public) increasingly Correspondence and requests for materials should be addressed to B.M.

Supporting FAIR data: categorization of research data as a tool in data management

Informaatiotutkimus

The demand for implementation of the FAIR data principles is in many cases difficult for a researcher to adhere to in efficient ways due to lacking tools. We suggest categorizing data in a more extensive and systematic way with focus on the inherent properties of the data as means to enhancing research data services. After discussing different approaches to categorizing data, we propose a tripartite research data categorization based around the inherent aspect of stability. The three research data types are operational data, generic research data and research data publications. Generic research data is validated data and can be cumulative, i.e. data can be added without versioning, however if it is dynamic it should be versioned. Generic research data should be separated from immutable dataset publications that are published for reasons of reproducibility of specific research results.

Enhancing Reuse of Data and Biological Material in Medical Research: From FAIR to FAIR-Health

Biopreservation and Biobanking, 2018

The known challenge of underutilization of data and biological material from biorepositories as potential resources for medical research has been the focus of discussion for over a decade. Recently developed guidelines for improved data availability and reusability-entitled FAIR Principles (Findability, Accessibility, Interoperability, and Reusability)-are likely to address only parts of the problem. In this article, we argue that biological material and data should be viewed as a unified resource. This approach would facilitate access to complete provenance information, which is a prerequisite for reproducibility and meaningful integration of the data. A unified view also allows for optimization of long-term storage strategies, as demonstrated in the case of biobanks. We propose an extension of the FAIR Principles to include the following additional components: (1) quality aspects related to research reproduc-ibility and meaningful reuse of the data, (2) incentives to stimulate effective enrichment of data sets and biological material collections and its reuse on all levels, and (3) privacy-respecting approaches for working with the human material and data. These FAIR-Health principles should then be applied to both the biological material and data. We also propose the development of common guidelines for cloud architectures, due to the unprecedented growth of volume and breadth of medical data generation, as well as the associated need to process the data efficiently.

FAIR4Health: Findable, Accessible, Interoperable and Reusable data to foster Health Research

Open Research Europe, 2022

Due to the nature of health data, its sharing and reuse for research are limited by ethical, legal and technical barriers. The FAIR4Health project facilitated and promoted the application of FAIR principles in health research data, derived from the publicly funded health research initiatives to make them Findable, Accessible, Interoperable, and Reusable (FAIR). To confirm the feasibility of the FAIR4Health solution, we performed two pathfinder case studies to carry out federated machine learning algorithms on FAIRified datasets from five health research organizations. The case studies demonstrated the potential impact of the developed FAIR4Health solution on health outcomes and social care research. Finally, we promoted the FAIRified data to share and reuse in the European Union Health Research community, defining an effective EU-wide strategy for the use of FAIR principles in health research and preparing the ground for a roadmap for health research institutions to offer access to ...