DNA Sequence Variation in the Mitochondrial Control Region of Oryctolagus cuniculus from Croatia (original) (raw)

Rabbit mitochondrial DNA: preliminary comparison between some domestic and wild animals

Genetics Selection Evolution, 1987

The map of the restriction endonuclease cleavage sites of rabbit mitochondrial DNA (mtDNA) has been established : 41 sites were mapped using 13 enzymes. This genome, although rather large for a mammalian mtDNA (17 300 bp), is organized in the typical vertebrate fashion. For each of 6 wild and 5 domestic rabbits belonging respectively to the subspecies Oryctolagus cuniculus algirus and Oryctolagus cuniculus cuniculus, mtDNA molecules are heterogeneous in size. The length variations of about 100 bp have been assigned to the main non coding region of the genome. Very curiously, according to these preliminary results the mtDNAs of the two subspecies exhibit similar restriction patterns. However, 2 variants were found among the animals examined, one in each population.

Rabbit mitochondrial DNA diversity from prehistoric to modern times

Journal of Molecular Evolution, 1995

The mitochondrial genetic variability in European rabbit (Oryctolagus cuniculus) populations present in Europe and North Africa from 11,000 years ago to the present day has been analyzed using ancient DNA techniques. DNA was extracted from 90 rabbit bones found in 22 archaeological sites dated between the Mesolithic and recent times. Nucleotide sequences present in a variable 233-bp domain of the cytochrome b gene were compared to those present in modern-day rabbits. The results show that the structure of ancient populations of wild rabbit exhibited remarkable stability over time until the Middle Ages. At this time, a novel type of mtDNA molecule abruptly appears into most wild populations studied from France. This mtDNA type corresponds to that currently present in the domestic breeds of rabbit examined so far. The relative rapidity by which this mtDNA type established and its absence in all sites examined before 1,700 years ago lend support to the hypothesis that between 2,000 and 1,000 years ago, man may have favored the development, into all regions of France, of animals carrying this particular mtDNA molecule. The origin of such animals has still to be found: animals previously living outside of France or within France but in very restricted areas? This event was concomitant with the documented establishment of warrens after the tenth century A.D. in Europe.

Phylogeography of the European rabbit (Oryctolagus cuniculus) in the Iberian Peninsula inferred from RFLP analysis of the cytochrome b gene

Heredity, 2000

We studied mitochondrial DNA variation in the European rabbit through the examination of restriction fragment length polymorphism in 526 individuals from 20 locations spread across the Iberian Peninsula. Digestion with eight enzymes of a 1120-bp fragment comprising most of the cytochrome b gene resolved 38 dierent haplotypes. These haplotypes were distributed in two highly divergent clades, with dierent but overlapping geographical distributions, and with comparable levels of within-clade variation. The overall phylogeographical pattern suggests a history of long-term regional isolation of two groups of rabbit populations, compatible with the recognition of two subspecies within the Iberian Peninsula, followed by recent contact and admixture. The underlying cause is sought in the alternation of glacial and interglacial periods in the late Pleistocene.

Status and origin of Egyptian local rabbits in comparison with Spanish common rabbits using mitochondrial DNA sequence analysis

World Rabbit Science

Mitochondrial DNA (mtDNA) and cytochrome b (cyt b) gene sequences were used to determine the status of genetic diversity and phylogeny for 132 individuals from local rabbit breeds in Egypt and Spain. The Egyptian local rabbit breeds were Egyptian Red Baladi (ERB), Egyptian Black Baladi (EBB) and Egyptian Gabali Sinai (EGS). However, the Spanish local rabbit breed was Spanish common rabbit (SCR). Previous breeds were compared with European Wild Rabbit taken from Albacete, Spain (EWR). A total of 353 mutations, 290 polymorphic sites, 14 haplotypes, 0.06126 haplotype diversity and -1.900 (<em>P</em><0.05) for Tajima’s D were defined in this study. Haplotype A mostly occurred in 83.3% of Egyptian rabbits and 11.7% of EWR, while haplotype B occurred in 63.8% of Spanish rabbits and 36.2% of the EGS breed. A total of 47 domestic and wild <em>Oryctolagus cuniculus</em> published sequences were used to investigate the origin and relation among the rabbit breeds te...

Postglacial Dispersal of the European Rabbit (Oryctolagus Cuniculus) on the Iberian Peninsula Reconstructed from Nested Clade and Mismatch Analyses of Mitochondrial Dna Genetic Variation

Evolution, 2002

Nested clade analysis was applied to cytochrome b restriction site data previously obtained on 20 natural populations of the European rabbit across the Iberian Peninsula to test the hypothesis of postglacial dispersal from two main refugia, one in the northeast and the other in the southwest. Apart from historical fragmentation that resulted in geographic discontinuity of two distinct mitochondrial DNA (mtDNA) clades A and B, patterns of haplotype genetic variability have been shaped mostly by restricted gene flow via isolation by distance. The distribution of tip versus interior haplotypes suggests that dispersal occurred from both the southwestern and northeastern groups. Dispersal from the southwest had a north and northwest direction, whereas from the northeast it had mostly a western and southern orientation, with subsequent overlap in a southeastern-northwestern axis across the Iberian Peninsula. The analysis of the pairwise mismatch distribution of a 179-181-bp fragment of the mtDNA control region, for seven of those populations, further supports the idea that major patterns of dispersal were in the direction of central Iberia. Additionally, rabbit populations do not show signs of any significant loss of genetic diversity in the recent past, implying that they maintained large population sizes and structure throughout the ice ages. This is congruent with the fact that the Iberian Peninsula was itself a glacial refugium during Quaternary ice ages. Nonetheless, climatic oscillations of this period, although certainly milder than in northern Europe, were sufficient to affect the range distributions of Iberian organisms.

Mitochondrial D-loop sequences and haplotypes diversity in Egyptian rabbit breeds

World Rabbit Science

Rabbit breeds in Egypt are local and adapted foreign breeds that have been imported since the middle of the last century. Stressful environmental conditions including climatic changes, exposure to diseases and breeding selection have an influence on how gene flow has shaped the genetic diversity of the breeds. Mitochondrial DNA D-loop is a genetic marker used to trace the geographic distribution of genetic variation for the investigation of expansions, migrations and other gene flow patterns. The study aimed to determine the genetic diversity of the mitochondrial DNA D-loop (mtDNA D-loop) in Black Baladi, Red Baladi, Gabali, APRI line and New Zealand breeds to gather the scientific data required to create a proper conservation and sustainable management plan. Blood samples were taken from animals unrelated to each other. A 332-bp of mtDNA D-loop was successfully amplified and alignment sequences were deposited in the GenBank database. The results detected six haplotypes in the five ...

Mitochondrial DNA control region variability in wild boars from west Balkans

Genetika, 2013

The wild boar (Sus scrofa) is one of most abundant game species in hunting areas of Balkan region. The large fraction of pre-glacial genetic diversity in wild boar populations from the Balkans was addressed due to high proportion of unique mtDNA haplotypes found in Greece, indicating Balkan as main refugial area for wild boars. The aim of the present study is to characterize mitochondrial DNA control region variability in wild boars from different areas in the West Balkan region, in order to evaluate level of genetic variability, to detect unique haplotypes and to infer possible structuring. The total number of 163 individuals from different sampling localities were included in the study. A fragment of the mtDNA control region was amplified and sequenced by standard procedures. Population genetic analyses were performed using several computer packages: BioEdit, ARLEQUIN 3.5.1.2., Network 4.6.0.0 and MEGA5. Eleven different haplotypes were identified and haplotype diversity was 0.676...

Origin of European rabbit (Oryctolagus cuniculus) in a Mediterranean island: Zooarchaeology and ancient DNA examination

Journal of Evolutionary Biology, 1994

Mammalian species presently living on Mediterranean islands have been brought in by man. The question of their geographical origin and of the time of their introduction is often a matter of debate. We studied this problem using a population of rabbits (European rabbit: Oryctolagus cuniculus) living in Zembra, an island off Tunisia. Archaeological surveys show that rabbit has been introduced to the island by Bronze Age or Roman people, between the IIIrd Millenium B.C. and the IIIrd century A.D. Part of the 16S-rRNA gene of mitochondrial DNAs from fossil bones of different ages (dated back to 130-390 A.D.) was characterized and compared to that of present day rabbits of differing geographical origin. The data suggest that animals present on Zembra in late Roman times belonged to the same maternal lineage as present populations from Northern Spain and Southern France.

Population Structure of the Lower Keys Marsh Rabbit as Determined by Mitochondrial DNA Analysis

Journal of Wildlife Management, 2009

We used nucleotide sequence data from a mitochondrial DNA fragment to characterize variation within the endangered Lower Keys marsh rabbit (Sylvilagus palustris hefneri). We observed 5 unique mitochondrial haplotypes across different sampling sites in the Lower Florida Keys, USA. Based on the frequency of these haplotypes at different geographic locations and relationships among haplotypes, we observed 2 distinct clades or groups of sampling sites (western and eastern clades). These 2 groups showed low levels of gene flow. Regardless of their origin, marsh rabbits from the Lower Florida Keys can be separated into 2 genetically distinct management units, which should be considered prior to implementation of translocations as a means of offsetting recent population declines. (JOURNAL OF WILDLIFE

Inferring the Evolutionary History of the European Rabbit (Oryctolagus cuniculus) from Molecular Markers

Lagomorph Biology, 2008

The European rabbit (Oryctolagus cuniculus) is a well-known species all over the world and occurs in both wild and domestic forms. European rabbits are present in most of Europe, North Africa, parts of South America, Australia and New Zealand, as well as in more than 800 islands, where they occupy a huge variety of ecosystems (Thompson and King 1994). Its domestic counterpart exhibits a remarkable variety of breeds showing variation in colour, size and fertility. Domestic breeds are kept and raised globally for meat, wool and fur, and also as increasing popular pets. However, for most of its history, the European rabbit was confined to the Iberian Peninsula where the species is supposed to have emerged in the mid-Pleistocene. We know this from the analysis of the fossil record that in addition, places also in the Iberian Peninsula the emergence of genus Oryctolagus (Lopez-Martinez 2008, this book). The subsequent geographical expansion and successful colonization of multiple territories is as recent as historical times and has been mostly human-mediated. This expansion eventually ended in a domestication process that is unique to Western Europe. While the fossil record together with much more recent historical documents attesting the origin and recent expansion of the European rabbit provide us with a rough picture of the history of the species, the fact is that in both cases they are represented by scarce and spotty information. This in turn prevents a deeper understanding of the rich and unique evolutionary history of the rabbit species. An alternative way to address questions related to this subject is the analysis of genetic data. In fact, the history of species, including their split from sister taxa, historical population subdivisions, expansions and contractions, and other types of demographic events, leave a signature in their genomes that can be assessed by using a combination of molecular biology tools and statistical inference procedures. This is particularly true in the last few years, which witnessed the dramatic development