Complete mitochondrial genomes of three lizard species and the systematic position of the Lacertidae (Squamata (original) (raw)
Related papers
Gene, 2007
For the first time the complete mitochondrial genome was sequenced for a member of Lacertidae. Lacerta viridis viridis was sequenced in order to compare the phylogenetic relationships of this family to other reptilian lineages. Using the long-polymerase chain reaction (long PCR) we characterized a mitochondrial genome, 17,156 bp long showing a typical vertebrate pattern with 13 protein coding genes, 22 transfer RNAs (tRNA), two ribosomal RNAs (rRNA) and one major noncoding region. The noncoding region of L. v. viridis was characterized by a conspicuous 35 bp tandem repeat at its 5′ terminus. A phylogenetic study including all currently available squamate mitochondrial sequences demonstrates the position of Lacertidae within a monophyletic squamate group. We obtained a narrow relationship of Lacertidae to Scincidae, Iguanidae, Varanidae, Anguidae, and Cordylidae. Although, the internal relationships within this group yielded only a weak resolution and low bootstrap support, the revealed relationships were more congruent with morphological studies than with recent molecular analyses.
Journal of Molecular Evolution, 2003
We sequenced the complete control region (CR) and adjacent tRNAs, partial 12S rRNA, and cytochrome b (over 3100 bp) from eight individuals of Madeiran wall lizards, Lacerta dugesii, from four distinct island populations. The tRNAs exhibit a high degree of intraspecific polymorphisms compared to other vertebrates. All CR sequences include a minisatellite that varies in length between populations but is apparently fixed within them. Variation in minisatellite length appears between populations separated by apparently very short evolutionary time spans. Many motifs identified in the CR of other vertebrates are not highly conserved, although conserved blocks are identifiable between the few published reptile CR sequences. Overall there are extensive differences in the internal organization of the reptile CR compared to the more widely studied mammals and birds. Variability in the CR is lower than in cytochrome b, but higher than in 12S rRNA. Phylogenetic analysis of these sequences produces a well-resolved estimate of relationships between populations.
Mitochondrial phylogeography of the Dalmatian wall lizard, Podarcis melisellensis (Lacertidae
Organisms Diversity & Evolution, 2004
A 903 bp section of the mitochondrial cytochrome b gene was sequenced from 73 specimens of Podarcis melisellensis collected at 52 localities distributed over the major part of the species' range. In addition, parts of the 12S (about 470 bp) and 16S rRNA (about 500 bp) genes were analysed for 11 representative samples leading to a congruent phylogeny. Our study includes representatives of all 20 subspecies recognized today. The phylogenetic analysis of the sequence data revealed three main clades: mainland with nearby islands, Vis archipelago, and Lastovo archipelago. The degree of mitochondrial DNA divergence among these clades suggests a separation of the respective population groups during the earliest Pleistocene. The phylogenetic pattern observed within the species is in sharp contrast to the actual taxonomic division into subspecies. A correlation between genetic diversity of P. melisellensis populations and paleogeography of the regions they inhabit is discussed.
Mitochondrial phylogeography of the Dalmatian wall lizard, (Lacertidae
Organisms Diversity & Evolution, 2004
A 903 bp section of the mitochondrial cytochrome b gene was sequenced from 73 specimens of Podarcis melisellensis collected at 52 localities distributed over the major part of the species' range. In addition, parts of the 12S (about 470 bp) and 16S rRNA (about 500 bp) genes were analysed for 11 representative samples leading to a congruent phylogeny. Our study includes representatives of all 20 subspecies recognized today. The phylogenetic analysis of the sequence data revealed three main clades: mainland with nearby islands, Vis archipelago, and Lastovo archipelago. The degree of mitochondrial DNA divergence among these clades suggests a separation of the respective population groups during the earliest Pleistocene. The phylogenetic pattern observed within the species is in sharp contrast to the actual taxonomic division into subspecies. A correlation between genetic diversity of P. melisellensis populations and paleogeography of the regions they inhabit is discussed.
Mitochondrial DNA Part B, 2016
The first complete mitochondrial genome sequence of parthenogenetic Caucasian rock lizard Darevskia unisexualis (Lacertidae family) is determined by hybrid assembly with Illumina HiSeq and PacBio RS II platforms. The circular 21.4 kbp mitogenome contains 13 protein-coding genes, 12S and 16S rRNA genes, 20 tRNAs, two pseudogenized tRNAs, and one long tandem repeats with 4.1 kbp length formed by 59 bp monomer repeated x70.6 times located before control region. This finding represents a new example of mitogenome variation in lizards of hybrid origin, providing fundamental data for following study of a unique hybridization system formed by parthenogenetic and bisexual species in the mountain steppe of central Armenia.
Amphibia-Reptilia, 2012
Timon, a small genus of lacertid lizards, includes four species distributed in two separate ranges in the western and eastern part of the Mediterranean Basin. Phylogenetic relationships between the two groups have not been resolved, and the taxonomic situation of the two subspecies of the eastern representative of the genus, Timon princeps, is not clear. To address these questions, partial DNA sequences of two nuclear (β-fibrinogen intron 7 and C-mos) and three mitochondrial (cytochrome b, 12S rRNA and 16S rRNA) genes were analyzed. Based on the high genetic distance between the two subspecies of T. princeps we promote their taxonomic status to full species, Timon princeps and Timon kurdistanicus. Divergence time estimates based on other lacertid species suggest that the separation of the green (Lacerta) and ocellated (Timon) lizards took place around 12 My ago, and that the Eastern group underwent speciation around 4-5 my ago, perhaps associated with the uplifting of the Zagros mou...
2021
The mitogenome of the South American parthenogenetic lizard Loxopholis percarinatum Müller, 1923 (Squamata: Gymnophthalmidae), a uni-bisexual species complex, was recovered for three individuals from Rio Negro region, Amazonas, Brazil. The content and order of genes are typical for vertebrate mitochondrial genomes, and we recovered 13 protein-coding genes, 22 tRNA, and two rRNA (12S and 16S), in addition to partial fragments of the Control Region. A maximum likelihood phylogenetic analysis with mitogenomes of selected lizard families recovered L. percarinatum with Iphisa elegans Gray, 1851, the only other Gymnophthalmidae species available in GenBank.
Molecular phylogenetics of the Italian Podarcis lizards (Reptilia, Lacertidae)
Italian Journal of Zoology, 1998
Phylogenetic relationships within the Italian species of the lacertid genus Podarcis were examined by parsimony analysis of mitochondrial DNA sequences from the genes encoding the small ribosomal RNA and the phenyl transfer RNA. Lacerta viridis was used as outgroup and Teira dugesii was also included in the ingroup. The 80 phylogenetically informative positions produced four most parsimonious trees, with the Italian Podarcis split into three groups: the first comprised P. filfolensis, P. melisellensis. P. wagleriaria, P. muralis, and P. raffonei, the second P. sicula with its various subspecies. The third lineage was that of P. tiliguerta, whose relationships were resolved as more closely related to the first clade, when weighting transversion three times transitions. Bootstrap analyses on a subset of sequences representing all species herein studied, supported the results from the larger dataset. The present results are only partly in agreement with previous hypotheses based on morphology, immunology, and allozyme variation analyses.
Mitochondrial Dna Part B, 2015
We sequenced the mitochondrial genome of the Western green lizard (Lacerta bilineata) using Illumina technology and additional Sanger sequencing. The assembled 17 086 bp mitogenome had a GC content of 40.32% and consisted of 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and one control region (CR), with a gene order identical to the chordate consensus. In addition, we re-sequenced the mitogenome of the closely related Eastern green lizard L. viridis using the same techniques as for L. bilineata. The mitogenomes of L. bilineata and L. viridis showed a sequence identity of 94.4% and 99.9%, respectively, relative to the previously published L. viridis mitogenome. The phylogenetic reconstruction based on 17 Lacertinae mitogenomes using Anolis carolinensis as the outgroup supported L. bilineata and its sister species L. viridis as distinct lineages.