Converting lateral scanning into axial focusing to speed up three-dimensional microscopy (original) (raw)

2020, Light, Science & Applications

In optical microscopy, the slow axial scanning rate of the objective or the sample has traditionally limited the speed of volumetric imaging. Recently, by conjugating either a movable mirror to the image plane in a remote-focusing geometry or an electrically tuneable lens (ETL) to the back focal plane, rapid axial scanning has been achieved. However, mechanical actuation of a mirror limits the axial scanning rate (usually only 10–100 Hz for piezoelectric or voice coil-based actuators), while ETLs introduce spherical and higher-order aberrations that prevent high-resolution imaging. In an effort to overcome these limitations, we introduce a novel optical design that transforms a lateral-scan motion into a spherical aberration-free axial scan that can be used for high-resolution imaging. Using a galvanometric mirror, we scan a laser beam laterally in a remote-focusing arm, which is then back-reflected from different heights of a mirror in the image space. We characterize the optical p...

Converting lateral scanning into axial focusing to speed up 3D microscopy

In optical microscopy, the slow axial scanning rate of the objective or the sample has traditionally limited the speed of 3D volumetric imaging. Recently, by conjugating either a movable-mirror to the image plane or an electrotuneable lens (ETL) to the back-focal plane respectively, rapid axial scanning has been achieved. However, mechanical actuation of a mirror limits axial scanning rate (usually only 10-100 Hz for piezoelectric or voice coil based actuators), while ETLs introduce spherical and higher order aberrations, thereby preventing high-resolution imaging. Here, we introduce a novel optical design that can transform a lateral-scan motion into a spherical-aberration-free, high-resolution, rapid axial scan. Using a galvanometric mirror, we scan a laser beam laterally in a remote-focusing arm, which is then back-reflected from different heights of a mirror in image space. We characterize the optical performance of this remote focusing technique and use it to accelerate axially...

Simultaneous multiplane confocal microscopy using acoustic tunable lenses

Optics express, 2014

Maximizing the amount of spatiotemporal information retrieved in confocal laser scanning microscopy is crucial to understand fundamental three-dimensional (3D) dynamic processes in life sciences. However, current 3D confocal microscopy is based on an inherently slow stepwise process that consists of acquiring multiple 2D sections at different focal planes by mechanical or optical z-focus translation. Here, we show that by using an acoustically-driven optofluidic lens integrated in a commercial confocal system we can capture an entire 3D image in a single step. Our method is based on continuous axial scanning at speeds as high as 140 kHz combined with fast readout. In this way, one or more focus sweeps are produced on a pixel by pixel basis and the detected photons can be assigned to their corresponding focal plane enabling simultaneous multiplane imaging. We exemplify this method by imaging calibration and biological fluorescence samples. These results open the door to exploring new...

Wide field-of-view volumetric imaging by a mesoscopic scanning oblique plane microscopy with switchable objective lens

2020

Conventional light sheet fluorescence microscopy (LSFM), or selective plane illumination microscopy (SPIM), enables high resolution 3D imaging over a large volume by using two orthogonally aligned objective lenses to decouple excitation and emission. The recent development of oblique plane microscopy (OPM) simplifies LSFM design with only one single objective lens, by using off-axis excitation and remote focusing. However, most reports on OPM has a limited microscopic field of view (FOV), typically within 1×1 mm2. Our goal is to overcome the limitation with a new variant of OPM to achieve mesoscopic FOV. We implemented an optical design of mesoscopic scanning OPM to allow using low numerical aperture (NA) objective lens. The angle of the intermediate image before the remote focusing system was increased by a demagnification under Scheimpflug condition such that the light collecting efficiency in the remote focusing system was significantly improved. We characterized the 3D resolutio...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.