Further results on the deficiency of graphs (original) (raw)

Abstract

A proper t-edge-coloring of a graph G is a mapping α : E(G) → {1,. .. , t} such that all colors are used, and α(e) = α(e) for every pair of adjacent edges e, e ∈ E(G). If α is a proper edge-coloring of a graph G and v ∈ V (G), then the spectrum of a vertex v, denoted by S (v, α), is the set of all colors appearing on edges incident to v. The deficiency of α at vertex v ∈ V (G), denoted by def (v, α), is the minimum number of integers which must be added to S (v, α) to form an interval, and the deficiency def (G, α) of a proper edge-coloring α of G is defined as the sum v∈V (G) def (v, α). The deficiency of a graph G, denoted by def (G), is defined as follows: def (G) = min α def (G, α), where minimum is taken over all possible proper edge-colorings of G. For a graph G, the smallest and the largest values of t for which it has a proper t-edge-coloring α with deficiency def (G, α) = def (G) are denoted by w def (G) and W def (G), respectively. In this paper, we obtain some bounds on w def (G) and W def (G). In particular, we show that for any l ∈ N, there exists a graph G such that def (G) > 0 and W def (G) − w def (G) ≥ l. It is known that for the complete graph K 2n+1 , def (K 2n+1) = n (n ∈ N). Recently, Borowiecka-Olszewska, Drgas-Burchardt and Ha luszczak posed the following conjecture on the deficiency of nearcomplete graphs: if n ∈ N, then def (K 2n+1 − e) = n − 1. In this paper, we confirm this conjecture.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (37)

  1. S. Altinakar, G. Caporossi, A. Hertz, A comparison of integer and constraint pro- gramming models for the deficiency problem, Computers and Oper. Res. 68 (2016) 89-96.
  2. A.S. Asratian, R.R. Kamalian, Interval colorings of edges of a multigraph, Appl. Math. 5 (1987) 25-34 (in Russian).
  3. A.S. Asratian, R.R. Kamalian, Investigation on interval edge-colorings of graphs, J. Combin. Theory Ser. B 62 (1994) 34-43.
  4. A.S. Asratian, T.M.J. Denley, R. Haggkvist, Bipartite Graphs and their Applications, Cambridge University Press, Cambridge, 1998.
  5. M.A. Axenovich, On interval colorings of planar graphs, Congr. Numer. 159 (2002) 77-94.
  6. L.W. Beineke, R.J. Wilson, On the edge-chromatic number of a graph, Discrete Math. 5 (1973) 15-20.
  7. M. Borowiecka-Olszewska, E. Drgas-Burchardt, M. Ha luszczak, On the structure and deficiency of k-trees with bounded degree, Discrete Appl. Math. 201 (2016) 24-37.
  8. M. Borowiecka-Olszewska, E. Drgas-Burchardt, The deficiency of all generalized Hertz graphs and minimal consecutively non-colourable graphs in this class, Discrete Math. 339 (2016) 1892-1908.
  9. M. Bouchard, A. Hertz, G. Desaulniers, Lower bounds and a tabu search algorithm for the minimum deficiency problem, J. Comb. Optim. 17 (2009) 168-191.
  10. Y. Feng, Q. Huang, Consecutive edge-coloring of the generalized θ-graph, Discrete Appl. Math. 155 (2007) 2321-2327.
  11. K. Giaro, M. Kubale, Consecutive edge-colorings of complete and incomplete Carte- sian products of graphs, Cong. Num. 128 (1997) 143-149.
  12. K. Giaro, M. Kubale, Compact scheduling of zero-one time operations in multi-stage systems, Discrete Appl. Math. 145 (2004) 95-103.
  13. K. Giaro, M. Kubale, M. Ma lafiejski, On the deficiency of bipartite graphs, Discrete Appl. Math. 94 (1999) 193-203.
  14. K. Giaro, M. Kubale, M. Ma lafiejski, Consecutive colorings of the edges of general graphs, Discrete Math. 236 (2001) 131-143.
  15. A. Grzesik, H. Khachatrian, Interval edge-colorings of K 1,m,n , Discrete Appl. Math. 174 (2014) 140-145.
  16. H.M. Hansen, Scheduling with minimum waiting periods, MSc Thesis, Odense Uni- versity, Odense, Denmark, 1992 (in Danish).
  17. D. Hanson, C.O.M. Loten, B. Toft, On interval colorings of bi-regular bipartite graphs, Ars Combin. 50 (1998) 23-32.
  18. R.R. Kamalian, Interval colorings of complete bipartite graphsand trees, preprint, Comp. Cen. of Acad. Sci. of Armenian SSR, Yerevan, 1989 (in Russian).
  19. R.R. Kamalian, Interval edge colorings of graphs, Doctoral Thesis, Novosibirsk, 1990.
  20. R.R. Kamalian, A.N. Mirumian, Interval edge colorings of bipartite graphs of some class, Dokl. NAN RA 97 (1997) 3-5 (in Russian).
  21. R.R. Kamalian, P.A. Petrosyan, A note on interval edge-colorings of graphs, Math. Probl. Comput. Sci. 36 (2012) 13-16.
  22. R.R. Kamalian, P.A. Petrosyan, A note on upper bounds for the maximum span in interval edge-colorings of graphs, Discrete Math. 312 (2012) 1393-1399.
  23. H.H. Khachatrian, Deficiency of outerplanar graphs, Proceedings of the Yerevan State University (2017), in press.
  24. M. Kubale, Graph Colorings, American Mathematical Society, 2004.
  25. P.A. Petrosyan, Interval edge-colorings of complete graphs and n-dimensional cubes, Discrete Math. 310 (2010) 1580-1587.
  26. P.A. Petrosyan, Interval edge colorings of some products of graphs, Discuss. Math. Graph Theory 31(2) (2011) 357-373.
  27. P.A. Petrosyan, G.H. Karapetyan, Lower bounds for the greatest possible number of colors in interval edge colorings of bipartite cylinders and bipartite tori, in: Proceed- ings of the CSIT Conference (2007) 86-88.
  28. P.A. Petrosyan, H.H. Khachatrian, H.G. Tananyan, Interval edge-colorings of Carte- sian products of graphs I, Discuss. Math. Graph Theory 33(3) (2013) 613-632.
  29. P.A. Petrosyan, H.H. Khachatrian, L.E. Yepremyan, H.G. Tananyan, Interval edge- colorings of graph products, in: Proceedings of the CSIT Conference (2011) 89-92.
  30. P.A. Petrosyan, H.H. Khachatrian, T.K. Mamikonyan, On interval edge-colorings of bipartite graphs, IEEE Computer Science and Information Technologies (CSIT) 2015, 71-76.
  31. P.A. Petrosyan, S.T. Mkhitaryan, Interval cyclic edge-colorings of graphs, Discrete Math. 339 (2016) 1848-1860.
  32. P.A. Petrosyan, H.E. Sargsyan, On resistance of graphs, Discrete Appl. Math. 159 (2011) 1889-1900.
  33. S.V. Sevast'janov, Interval colorability of the edges of a bipartite graph, Metody Diskret. Analiza 50 (1990) 61-72 (in Russian).
  34. A. Schwartz, The deficiency of a regular graph, Discrete Math. 306 (2006) 1947-1954.
  35. H.H. Tepanyan, P.A. Petrosyan, Interval edge-colorings of composition of graphs, Discrete Appl. Math. 217 (2017) 368-374.
  36. V.G. Vizing, The chromatic class of a multigraph, Kibernetika 3 (1965) 29-39 (in Russian).
  37. D.B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, 2001.