Novel mutations target distinct subgroups of medulloblastoma (original) (raw)

Subtypes of medulloblastoma have distinct developmental origins

Nature, 2010

Medulloblastoma encompasses a collection of clinically and molecularly diverse tumour subtypes that together comprise the most common malignant childhood brain tumour 1-4 . These tumours are thought to arise within the cerebellum, with approximately 25% originating from granule neuron precursor cells (GNPCs) after aberrant activation of the Sonic Hedgehog pathway (hereafter, SHH subtype) 3-8 . The pathological processes that drive heterogeneity among the other medulloblastoma subtypes are not known, hindering the development of much needed new therapies. Here we provide evidence that a discrete subtype of medulloblastoma that contains activating mutations in the WNT pathway effector CTNNB1 (hereafter, WNT subtype) 1,3,4 arises outside the cerebellum from cells of the dorsal brainstem. We found that genes marking human WNTsubtype medulloblastomas are more frequently expressed in the lower rhombic lip (LRL) and embryonic dorsal brainstem than in the upper rhombic lip (URL) and developing cerebellum. Magnetic resonance imaging (MRI) and intra-operative reports showed that human WNT-subtype tumours infiltrate the dorsal brainstem, whereas SHH-subtype tumours are located within the cerebellar hemispheres. Activating mutations in Ctnnb1 had little impact on progenitor cell populations in the cerebellum, but caused the abnormal accumulation of cells on the embryonic dorsal brainstem which included aberrantly proliferating Zic1 1 precursor cells. These lesions persisted in all mutant adult mice; moreover, in 15% of cases in which Tp53 was concurrently deleted, they progressed to form medulloblastomas that recapitulated the anatomy and gene expression profiles of human WNT-subtype medulloblastoma. We provide the first evidence, to our knowledge, that subtypes of medulloblastoma have distinct cellular origins. Our data provide an explanation for the marked molecular and clinical differences between SHHand WNT-subtype medulloblastomas and have profound implications for future research and treatment of this important childhood cancer.

Genetic Alterations in Mouse Medulloblastomas and Generation of Tumors De novo from Primary Cerebellar Granule Neuron Precursors

Cancer Research, 2007

Mice lacking p53 and one or two alleles of the cyclin D-dependent kinase inhibitor p18 Ink4c are prone to medulloblastoma development. The tumor frequency is increased by exposing postnatal animals to ionizing radiation at a time when their cerebella are developing. In irradiated mice engineered to express a floxed p53 allele and a Nestin-Cre transgene, tumor development can be restricted to the brain. Analysis of these animals indicated that inactivation of one or both Ink4c alleles did not affect the time of medulloblastoma onset but increased tumor invasiveness. All such tumors exhibited complete loss of function of the Patched 1 (Ptc1) gene encoding the receptor for sonic hedgehog, and many exhibited other recurrent genetic alterations, including trisomy of chromosome 6, amplification of N-Myc, modest increases in copy number of the Ccnd1 gene encoding cyclin D1, and other complex chromosomal rearrangements. In contrast, medulloblastomas arising in Ptc1 +/À mice lacking one or both Ink4c alleles retained p53 function and exhibited only limited genomic instability. Nonetheless, complete inactivation of the wild-type Ptc1 allele was a universal event, and trisomy of chromosome 6 was again frequent. The enforced expression of N-Myc or cyclin D1 in primary cerebellar granule neuron precursors isolated from Ink4c À/À , p53 À/À mice enabled the cells to initiate medulloblastomas when injected back into the brains of immunocompromised recipient animals. These ''engineered'' tumors exhibited gene expression profiles indistinguishable from those of medulloblastomas that arose spontaneously. These results underscore the functional interplay between a network of specific genes that recurrently contribute to medulloblastoma formation.

The Neurodevelopmental and Molecular Landscape of Medulloblastoma Subgroups: Current Targets and the Potential for Combined Therapies

Cancers

Medulloblastoma is the most common malignant pediatric brain tumor and is associated with significant morbidity and mortality in the pediatric population. Despite the use of multiple therapeutic approaches consisting of surgical resection, craniospinal irradiation, and multiagent chemotherapy, the prognosis of many patients with medulloblastoma remains dismal. Additionally, the high doses of radiation and the chemotherapeutic agents used are associated with significant short- and long-term complications and adverse effects, most notably neurocognitive delay. Hence, there is an urgent need for the development and clinical integration of targeted treatment regimens with greater efficacy and superior safety profiles. Since the adoption of the molecular-based classification of medulloblastoma into wingless (WNT) activated, sonic hedgehog (SHH) activated, group 3, and group 4, research efforts have been directed towards unraveling the genetic, epigenetic, transcriptomic, and proteomic pr...

Medulloblastoma biology in the post-genomic era

Future Oncology, 2012

Medulloblastomas, the most common malignant pediatric brain tumors, are comprised of four molecularly distinct subtypes. However, treatment has yet to exploit these molecular vulnerabilities. Three recent studies sequenced a total of 310 primary tumors and identified that two of the four medulloblastoma subtypes are concomitantly associated with subtype-specific mutations as previously characterized. In contrast, the overwhelming majority of mutations occurred only once in the entire cohort and just 12 genes were recurrently mutated with statistical significance. Perturbations in epigenetic regulation are emerging as a unifying theme in cancer and similarly recurring mutations in epigenetic mechanisms were distributed across all subtypes in medulloblastoma. Designing targeted therapies to such a molecularly diverse disease in the post-genomic era presents new challenges. This will require novel methods to link these nonrecurrent mutations into pathways, and preclinical models that f...

Molecular subgroups of medulloblastoma: the current consensus

Acta Neuropathologica, 2011

Medulloblastoma, a small blue cell malignancy of the cerebellum, is a major cause of morbidity and mortality in pediatric oncology. Current mechanisms for clinical prognostication and stratification include clinical factors (age, presence of metastases, and extent of resection) as well as histological subgrouping (classic, desmoplastic, and large cell/anaplastic histology). Transcriptional profiling studies of medulloblastoma cohorts from several research groups around the globe have suggested the existence of multiple distinct molecular subgroups that differ in their demographics, transcriptomes, somatic genetic events, and clinical outcomes. Variations in the number, composition, and nature of the subgroups between studies brought about a consensus conference in Boston in the fall of 2010. Discussants at the conference came to a consensus that the evidence supported the existence of four main subgroups of

A Mouse Model of the Most Aggressive Subgroup of Human Medulloblastoma

Cancer Cell, 2012

Medulloblastomas that display a large cell/anaplastic morphology and overexpress the cellular c-MYC gene are highly aggressive and carry a very poor prognosis. This so-called MYC-subgroup differs in its histopathology, gene expression profile, and clinical behavior from other forms of medulloblastoma. We generated a mouse model of MYC-subgroup medulloblastoma by transducing Trp53-null cerebellar progenitor cells with Myc. The cardinal features of these mouse medulloblastomas closely mimic those of human MYCsubgroup tumors and significantly differ from mouse models of the Sonic-Hedgehog-and WNT-disease subgroups. This mouse model should significantly accelerate understanding and treatment of the most aggressive form of medulloblastoma and infers distinct roles for MYC and MYCN in tumorigenesis.

Medulloblastoma: From Molecular Pathology to Therapy

Clinical Cancer Research, 2008

Medulloblastoma is the most common malignant tumor of central nervous system in children. Patients affected by medulloblastoma may be categorized as high-risk and standard-risk patients, based on the clinical criteria and histologic features of the disease. Currently, multimodality treatment, including surgery, radiotherapy, and chemotherapy is considered as the most effective strategy against these malignant cerebellar tumors of the childhood. Despite the potential poor outcomes of these lesions, the 5-year survival stands, at present, at 70% to 80% for standard-risk patients, whereas high-risk patients have a 5-year survival of 55% to 76%. Attempts to further reduce the morbidity and mortality associated with medulloblastoma have been restricted by the toxicity of conventional treatments and the infiltrative nature of the disease. Over the past decade, new discoveries in molecular biology have revealed new insights in signaling pathways regulating medulloblastoma tumor formation. ...

The tumor biology and molecular characteristics of medulloblastoma identifying prognostic factors associated with survival outcomes and prognosis

Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia, 2011

Medulloblastomas (MB) are highly aggressive primitive neuroectodermal tumors (PNET) usually located in the posterior fossa. Current treatment for MBs, which includes a combination of surgery, chemotherapy and radiation, remain challenging especially in younger patients. However, advances in the understanding of regulatory pathways in cerebellar development have elucidated possible areas of dysfunction involved in tumorigenesis. Multiple studies have demonstrated the importance of the sonic hedgehog, Wnt, and Notch pathways in MB pathogenesis at the molecular level. While staging and prognosis are often based on the Chang classification system, future algorithms will involve identifying molecular markers in order to allow for more specific risk stratifications of various MB subtypes and provide improved correlation with staging and prognosis. Future development of novel therapies that target the heterogeneity of MB and are tailored to the tumor's unique molecular profile may yie...

A molecular fingerprint for medulloblastoma

Cancer research, 2003

Medulloblastoma is the most common malignant pediatric brain tumor. In mice, Ptc1 haploinsufficiency and disruption of DNA repair (DNA ligase IV inactivation) or cell cycle regulation (Kip1, Ink4d, or Ink4c inactivation), in conjunction with p53 dysfunction, predispose to medulloblastoma. To identify genes important for this tumor, we evaluated gene expression profiles in medulloblastomas from these mice. Unexpectedly, medulloblastoma expression profiles were very similar among tumors and also to those of developing cerebellum. However, 21 genes were specifically up-regulated in medulloblastoma, including sFrp1, Ptc2, and Math1, members of signaling pathways that regulate cerebellar development. Coordinated deregulation of these same genes also occurred in a large subset of human medulloblastomas. These data identify a group of genes that is central to medulloblastoma tumorigenesis.

Medulloblastoma Can Be Initiated by Deletion of Patched in Lineage-Restricted Progenitors or Stem Cells

Cancer Cell, 2008

Medulloblastoma is the most common malignant brain tumor in children, but the cells from which it arises remain unclear. Here we examine the origin of medulloblastoma resulting from mutations in the Sonic hedgehog (Shh) pathway. We show that activation of Shh signaling in neuronal progenitors causes medulloblastoma by 3 months of age. Shh pathway activation in stem cells promotes stem cell proliferation, but only causes tumors after commitment to -and expansion ofthe neuronal lineage. Notably, tumors initiated in stem cells develop more rapidly than those initiated in progenitors, with all animals succumbing by 3-4 weeks. These studies suggest that medulloblastoma can be initiated in progenitors or stem cells, but that Shh-induced tumorigenesis is associated with neuronal lineage commitment.