Entropy analysis of third-grade MHD convection flows from a horizontal cylinder with slip (original) (raw)

In thermosfluid dynamics, free convection flows external to different geometries, such as cylinders, ellipses, spheres, curved walls, wavy plates, cones, etc., play major role in various industrial and process engineering systems. The thermal buoyancy force associated with natural convection flows can play a critical role in determining skin friction and heat transfer rates at the boundary. In thermal engineering, natural convection flows from cylindrical bodies has gained exceptional interest. In this article, we mathematically evaluate an entropy analysis of magnetohydrodynamic third-grade convection flows from permeable cylinder considering velocity and thermal slip effects. The resulting non-linear coupled partial differential conservation equations with associated boundary conditions are solved with an efficient unconditionally stable implicit finite difference Keller-Box technique. The impacts of momentum and heat transport coefficients, entropy generation and Bejan number are...

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact