RNA-Puzzles Round IV: 3D structure predictions of four ribozymes and two aptamers (original) (raw)
Related papers
RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme
RNA (New York, N.Y.), 2017
RNA-Puzzles is a collective experiment in blind 3D RNA structure prediction. We report here a third round of RNA-Puzzles. Five puzzles, 4, 8, 12, 13, 14, all structures of riboswitch aptamers and puzzle 7, a ribozyme structure, are included in this round of the experiment. The riboswitch structures include biological binding sites for small molecules (S-adenosyl methionine, cyclic diadenosine monophosphate, 5-amino 4-imidazole carboxamide riboside 5'-triphosphate, glutamine) and proteins (YbxF) and one set describes large conformational changes between ligand-free and ligand-bound states; the Varkud satellite ribozyme is the most recently solved structure of a known large ribozyme. All the puzzles have established biological functions and require structural understanding to appreciate their molecular mechanisms. Through the use of fast-track experimental data, including multidimensional chemical mapping, and accurate prediction of RNA secondary structure, a large portion of the ...
RNA (New York, N.Y.), 2015
This paper is a report of a second round of RNA-Puzzles, a collective and blind experiment in three-dimensional (3D) RNA structure prediction. Three puzzles, Puzzles 5, 6, and 10, represented sequences of three large RNA structures with limited or no homology with previously solved RNA molecules. A lariat-capping ribozyme, as well as riboswitches complexed to adenosylcobalamin and tRNA, were predicted by seven groups using RNAComposer, ModeRNA/SimRNA, Vfold, Rosetta, DMD, MC-Fold, 3dRNA, and AMBER refinement. Some groups derived models using data from state-of-the-art chemical-mapping methods (SHAPE, DMS, CMCT, and mutate-and-map). The comparisons between the predictions and the three subsequently released crystallographic structures, solved at diffraction resolutions of 2.5-3.2 Å, were carried out automatically using various sets of quality indicators. The comparisons clearly demonstrate the state of present-day de novo prediction abilities as well as the limitations of these state...
Frontiers in genetics, 2017
RNA molecules are essential players in many fundamental biological processes. Prokaryotes and eukaryotes have distinct RNA classes with specific structural features and functional roles. Computational prediction of protein structures is a research field in which high confidence three-dimensional protein models can be proposed based on the sequence alignment between target and templates. However, to date, only a few approaches have been developed for the computational prediction of RNA structures. Similar to proteins, RNA structures may be altered due to the interaction with various ligands, including proteins, other RNAs, and metabolites. A riboswitch is a molecular mechanism, found in the three kingdoms of life, in which the RNA structure is modified by the binding of a metabolite. It can regulate multiple gene expression mechanisms, such as transcription, translation initiation, and mRNA splicing and processing. Due to their nature, these entities also act on the regulation of gen...
Lectures L 2 . 1 RNAComposer : automated high-resolution structure prediction for large RNAs
2012
In contrast to the protein field, a much smaller number of RNA tertiary structures has been assessed by X-ray crystallography, NMR spectroscopy and cryo-EM, and deposited in structural data banks. In view of the rapidly growing access to RNA secondary structures their 3D structure prediction is in great demand in the RNA community. Only a few programs and web-accessible tools have been proposed for semi-automated and automated prediction of the RNA tertiary structure. Automated methods make use of the coarse-grained and atomic-level molecular dynamics, internal coordinate space dynamics, fragment assembly and comparative modelling using templates. They vary considerably in terms of the required input data (RNA sequence, secondary structure, conformational data or structural templates), structure prediction quality across different RNA sizes and computation time. Recently we have developed a novel approach for the fully automated RNA 3D structure prediction from the userdefined secon...
VfoldLA: A web server for loop assembly-based prediction of putative 3D RNA structures
Journal of Structural Biology, 2019
RNA three-dimensional (3D) structures are critical for RNA cellular functions. However, structure prediction for large and complex RNAs remains a challenge, which hampers our understanding of RNA structure-function relationship. We here report a new web server, the VfoldLA server (http:// rna.physics.missouri.edu/vfoldLA), for the prediction of RNA 3D structures from nucleotide sequences and base-pair information (2D structure). This server is based on the recently developed VfoldLA, a model that classifies the single-stranded loops (junctions) into four different types and according to the loop-helix connections, assembles RNA 3D structures from the loop/junction templates. The VfoldLA web server provides a user-friendly online interface for a fully automated prediction of putative 3D RNA structures using VfoldLA. With a single-RNA or RNA-RNA complex sequence and 2D structure as input, the server generates structure(s) with the JSmol visualization along with a downloadable PDB file. The output result may serve as useful scaffolds for future structure refinement studies.
Bridging the gap in RNA structure prediction
Current Opinion in Structural Biology, 2007
The field of RNA structure prediction has experienced significant advances in the past several years, thanks to the availability of new experimental data and improved computational methodologies. These methods determine RNA secondary structures and pseudoknots from sequence alignments, thermodynamics-based dynamic programming algorithms, genetic algorithms and combined approaches. Computational RNA three-dimensional modeling uses this information in conjunction with manual manipulation, constraint satisfaction methods, molecular mechanics and molecular dynamics. The ultimate goal of automatically producing RNA three-dimensional models from given secondary and tertiary structure data, however, is still not fully realized. Recent developments in the computational prediction of RNA structure have helped bridge the gap between RNA secondary structure prediction, including pseudoknots, and three-dimensional modeling of RNA.
Progress toward SHAPE Constrained Computational Prediction of Tertiary Interactions in RNA Structure
Non-Coding RNA
As more sequencing data accumulate and novel puzzling genetic regulations are discovered, the need for accurate automated modeling of RNA structure increases. RNA structure modeling from chemical probing experiments has made tremendous progress, however accurately predicting large RNA structures is still challenging for several reasons: RNA are inherently flexible and often adopt many energetically similar structures, which are not reliably distinguished by the available, incomplete thermodynamic model. Moreover, computationally, the problem is aggravated by the relevance of pseudoknots and non-canonical base pairs, which are hardly predicted efficiently. To identify nucleotides involved in pseudoknots and non-canonical interactions, we scrutinized the SHAPE reactivity of each nucleotide of the 188 nt long lariat-capping ribozyme under multiple conditions. Reactivities analyzed in the light of the X-ray structure were shown to report accurately the nucleotide status. Those that seem...
Determining structures of RNA aptamers and riboswitches by X-ray crystallography
Methods Mol. Biol, 2009
Structural biology plays a central role in gaining a full understanding of the myriad roles of RNA in biology. In recent years, innovative approaches in RNA purification and crystallographic methods have lead to the visualization of an increasing number of unique structures, providing new insights into its function at the atomic level. This article presents general protocols which have streamlined the process of obtaining a homogeneous sample of properly folded and active RNA in high concentrations that crystallizes well in the presence of a suitable heavy-atom for phasing. Of particular importance are approaches toward RNA crystallography that include exploring “construct space” as opposed to “condition space”. Moreover, development of a highly flexible method for experimentally phasing RNA crystals may open the door to a relatively simple means of solving these structures.
Predicting and Modeling RNA Architecture
Cold Spring Harbor Perspectives in Biology, 2010
A general approach for modeling the architecture of large and structured RNA molecules is described. The method exploits the modularity and the hierarchical folding of RNA architecture that is viewed as the assembly of preformed double-stranded helices defined by Watson-Crick base pairs and RNA modules maintained by non-Watson-Crick base pairs. Despite the extensive molecular neutrality observed in RNA structures, specificity in RNA folding is achieved through global constraints like lengths of helices, coaxiality of helical stacks, and structures adopted at the junctions of helices. The Assemble integrated suite of computer tools allows for sequence and structure analysis as well as interactive modeling by homology or ab initio assembly with possibilities for fitting within electronic density maps. The local key role of non-Watson-Crick pairs guides RNA architecture formation and offers metrics for assessing the accuracy of three-dimensional models in a more useful way than usual root mean square deviation (RMSD) values. 10 Comparisons between RNA models and crystal structures
Evaluation of the stereochemical quality of predicted RNA 3D models in the RNA-Puzzles submissions
RNA, 2021
In silico prediction is a well-established approach to derive a general shape of an RNA molecule based on its sequence or secondary structure. This paper reports an analysis of the stereochemical quality of the RNA three-dimensional models predicted using dedicated computer programs. The stereochemistry of 1052 RNA 3D structures, including 1030 models predicted by fully automated and human-guided approaches within 22 RNA-Puzzles challenges and reference structures, is analyzed. The evaluation is based on standards of RNA stereochemistry that the Protein Data Bank requires from deposited experimental structures. Deviations from standard bond lengths and angles, planarity, or chirality are quantified. A reduction in the number of such deviations should help in the improvement of RNA 3D structure modeling approaches.