Review on Thermoelectric materials and applications (original) (raw)

In this paper thermoelectric materials are theoretically analyzed. The thermoelectric cooler device proposed here uses semiconductor material and uses current to transport energy (i.e., heat) from a cold source to a hot source via n- and p-type carriers. This device is fabricated by combining the standard n- and p-channel solid-state thermoelectric cooler with a two-element device inserted into each of the two channels to eliminate the solid-state thermal conductivity. The heat removed from the cold source is the energy difference, because of field emitted electrons from the n-type and p-type semiconductors. The cooling efficiency is operationally defined as where V is the anode bias voltage The cooling device here is shown to have an energy transport (i.e., heat) per electron of about500 me V depending on concentration and field while, in good thermoelectric coolers, it is about 50-60 me V at room temperature.