Embryo Aggregation does not Improve the Development of Inter-Species Somatic Cell Nuclear Transfer Embryos in the Horse (original) (raw)
Related papers
Reproduction, 2005
The objective of the present work was to investigate and clarify the factors affecting the efficiency of somatic cell nuclear transfer (NT) in the horse, including embryo reconstruction, in vitro culture to the blastocyst stage, embryo transfer, pregnancy monitoring and production of offspring. Matured oocytes, with zona pellucida or after zona removal, were fused to cumulus cells, granulosa cells, and fetal and adult fibroblasts, and fused couplets were cultured in vitro. Blastocyst development to Day 8 varied significantly among donor cells (from 1.3% to 16%, P < 0.05). In total, 137 nuclear transfer-embryos were transferred nonsurgically to 58 recipient mares. Pregnancy rate after transfer of NT-embryos derived from adult fibroblasts from three donor animals was 24.3% (9/37 mares transferred corresponding to 9/101 blastocysts transferred), while only 1/18 (5.6%) of NT-blastocysts derived from one fetal cell line gave rise to a pregnancy (corresponding to 1/33 blastocysts transferred). Overall, seven pregnancies were confirmed at 35 days, and two went to term delivering two live foals. One foal died 40 h after birth of acute septicemia while the other foal was healthy and is currently 2 months old. These results indicate that (a) the zona-free method allows high fusion rate and optimal use of equine oocytes, (b) different donor cell cultures have different abilities to support blastocyst development, (c) blastocyst formation rate does not correlate with pregnancy fate and (d) healthy offspring can be obtained by somatic cell nuclear transfer in the horse. Reproduction (2005) 130 559-567 q 2005 Society for Reproduction and Fertility
Equine Cloning: In Vitro and In Vivo Development of Aggregated Embryos
Biology of Reproduction, 2012
The production of cloned equine embryos remains highly inefficient. Embryo aggregation has not yet been tested in the equine, and it might represent an interesting strategy to improve embryo development. This study evaluated the effect of cloned embryo aggregation on in vitro and in vivo equine embryo development. Zona-free reconstructed embryos were individually cultured in microwells (nonaggregated group) or as 2-or 3embryo aggregates (aggregated groups). For in vitro development, they were cultured until blastocyst stage and then either fixed for Oct-4 immunocytochemical staining or maintained in in vitro culture where blastocyst expansion was measured daily until Day 17 or the day on which they collapsed. For in vivo assays, Day 7-8 blastocysts were transferred to synchronized mares and resultant vesicles, and cloned embryos were measured by ultrasonography. Embryo aggregation improved blastocyst rates on a per well basis, and aggregation did not imply additional oocytes to obtain blastocysts. Embryo aggregation improved embryo quality, nevertheless it did not affect Day 8 and Day 16 blastocyst Oct-4 expression patterns. Equine cloned blastocysts expanded and increased their cell numbers when they were maintained in in vitro culture, describing a particular pattern of embryo growth that was unexpectedly independent of embryo aggregation, as all embryos reached similar size after Day 7. Early pregnancy rates were higher using blastocysts derived from aggregated embryos, and advanced pregnancies as live healthy foals also resulted from aggregated embryos. These results indicate that the strategy of aggregating embryos can improve their development, supporting the establishment of equine cloned pregnancies.
PLoS ONE, 2014
Embryo aggregation has been demonstrated to improve cloning efficiency in mammals. However, since no more than three embryos have been used for aggregation, the effect of using a larger number of cloned zygotes is unknown. Therefore, the goal of the present study was to determine whether increased numbers of cloned aggregated zygotes results in improved in vitro and in vivo embryo development in the equine. Zona-free reconstructed embryos (ZFRE's) were cultured in the well of the well system in four different experimental groups: I. 1x, only one ZFRE per microwell; II. 3x, three per microwell; III. 4x, four per microwell; and IV. 5x, five ZFRE's per microwell. Embryo size was measured on day 7, after which blastocysts from each experimental group were either a) maintained in culture from day 8 until day 16 to follow their growth rates, b) fixed to measure DNA fragmentation using the TUNEL assay, or c) transferred to synchronized mares. A higher blastocyst rate was observed on day 7 in the 4x group than in the 5x group. Non-aggregated embryos were smaller on day 8 compared to those aggregated, but from then on the in vitro growth was not different among experimental groups. Apoptotic cells averaged 10% of total cells of day 8 blastocysts, independently of embryo aggregation. Only pregnancies resulting from the aggregation of up to four embryos per microwell went beyond the fifth month of gestation, and two of these pregnancies, derived from experimental groups 3x and 4x, resulted in live cloned foals. In summary, we showed that the in vitro and in vivo development of cloned zona-free embryos improved until the aggregation of four zygotes and declined when five reconstructed zygotes were aggregated.
Viable calves produced by somatic cell nuclear transfer using meiotic-blocked oocytes
Cellular reprogramming, 2011
Somatic cell nuclear transfer (SCNT) has had an enormous impact on our understanding of biology and remains a unique tool for multiplying valuable laboratory and domestic animals. However, the complexity of the procedure and its poor efficiency are factors that limit a wider application of SCNT. In this context, oocyte meiotic arrest is an important option to make SCNT more flexible and increase the number of cloned embryos produced. Herein, we show that the use of butyrolactone I in association with brain-derived neurotrophic factor (BDNF) to arrest the meiotic division for 24 h prior to in vitro maturation provides bovine (Bos indicus) oocytes capable of supporting development of blastocysts and full-term cloned calves at least as efficiently as nonarrested oocytes. Furthermore, the procedure resulted in cloned blastocysts with an 1.5- and twofold increase of POU5F1 and IFNT2 expression, respectively, which are well-known markers of embryonic viability. Mitochondrial DNA (mtDNA) c...
The presence of heterogenous mitochondria from the host ooplast affects the acceptance of offspring obtained by somatic cell nuclear transfer. This might be avoided by obtaining oocytes from selected females, but is then complicated by low numbers of available oocytes. We examined the efficiency of equine somatic cell nuclear transfer using oocytes recovered by transvaginal aspiration of immature follicles from 11 mares. Use of meta-phase I oocytes as cytoplasts and of scriptaid (a histone deacetylase inhibitor) treatment during oocyte activation were evaluated to determine if these approaches would increase blastocyst production. In experiment 1, blastocyst development was 0/14 for metaphase I oocytes and 4/103 (4%) for metaphase II oocytes. Three blastocysts were transferred to recipient mares, resulting in two pregnancies and one live foal, which died shortly after birth. In experiment 2, blastocyst development was 2/47 (4%) for control oocytes and 1/83 (1%) for scriptaid-treated oocytes. No foals were born from two blastocysts transferred in the control group. The blastocyst from the scriptaid treatment resulted in birth of a live foal. In conclusion, this is apparently the first report of production of a viable cloned foal from oocytes collected from immature follicles of live mares, supporting the possibility of cloning using oocytes from selected mares.
Biology of Reproduction, 2002
The efficiency of bovine nuclear transfer using recipient oocytes recovered by ultrasound-guided follicle aspiration (ovum pickup [OPU]) was investigated. Oocyte donors were selected from 2 distinct maternal lineages (A and B) differing in 11 nucleotide positions of the mitochondrial DNA control region. A total of 1342 cumulus-oocyte complexes (COCs) were recovered. The numbers of total COCs and class I/II COCs recovered from donors of lineage A were higher (P Ͻ 0.001) than those obtained from lineage B. Follicle aspiration once per week yielded a higher (P Ͻ 0.001) total number of COCs per session than aspiration twice per week, whereas the reproduction status of donors (heifer vs. cow) had no effect on OPU results. Of the 1342 oocytes recovered, 733 (55%) were successfully matured in vitro and used for nuclear transfer. Fusion was achieved in 550 (75%) karyoplast-cytoplast complexes (KCCs), resulting in 277 (50%) cleaved embryos on Day 3. On Day 7 of culture, 84 transferable embryos (15% based on fused KCCs) were obtained. After 38 transfers (10 single, 22 double, and 6 triple transfers), 9 recipients (8 double and 1 triple transfer) were diagnosed as pregnant on Day 28, corresponding to a pregnancy rate of 24%. The proportion of transferable embryos on Day 7 was significantly (P Ͻ 0.05) influenced by maternal lineage of oocyte donors and by the frequency of follicle aspiration. Our study demonstrates the feasibility of generating nuclear transfer embryos with defined cytoplasmic background. These will be valuable tools to experimentally dissect the effects of nuclear and cytoplasmic components on embryonic, fetal, and postnatal development.
Reproduction, Fertility and Development, 2004
Despite intensive research, porcine nuclear transfer is still characterized by low success rates. To determine the effect of maturation period of porcine oocytes on subsequent development following nuclear transfer, we investigated fusion rate, induction of activation and development to blastocyst stage of somatic cells. For this we used MII-oocytes after 38, 40, and 42h of maturation culture as recipients. Oocytes surrounded by a compact cumulus mass were selected and placed into North Carolina State University (NCSU) 37 oocyte maturation medium supplemented with 0.1mgmL−1 cysteine, 10ngmL−1 epidermal growth factor, 10% porcine follicular fluid, 50μm 2-mercaptoethanol, 0.5mgmL−1 cAMP, 10 IU each of equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG) for 22h in humidified air with 5% CO2 at 38.5°C. Subsequently the oocytes were moved to fresh NCSU37 maturation medium without cAMP, eCG and hCG and incubated for an additional 16, 18, and 20h. In the first experi...
Biology of Reproduction, 2002
The efficiency of bovine nuclear transfer using recipient oocytes recovered by ultrasound-guided follicle aspiration (ovum pickup [OPU]) was investigated. Oocyte donors were selected from 2 distinct maternal lineages (A and B) differing in 11 nucleotide positions of the mitochondrial DNA control region. A total of 1342 cumulus-oocyte complexes (COCs) were recovered. The numbers of total COCs and class I/II COCs recovered from donors of lineage A were higher (P Ͻ 0.001) than those obtained from lineage B. Follicle aspiration once per week yielded a higher (P Ͻ 0.001) total number of COCs per session than aspiration twice per week, whereas the reproduction status of donors (heifer vs. cow) had no effect on OPU results. Of the 1342 oocytes recovered, 733 (55%) were successfully matured in vitro and used for nuclear transfer. Fusion was achieved in 550 (75%) karyoplast-cytoplast complexes (KCCs), resulting in 277 (50%) cleaved embryos on Day 3. On Day 7 of culture, 84 transferable embryos (15% based on fused KCCs) were obtained. After 38 transfers (10 single, 22 double, and 6 triple transfers), 9 recipients (8 double and 1 triple transfer) were diagnosed as pregnant on Day 28, corresponding to a pregnancy rate of 24%. The proportion of transferable embryos on Day 7 was significantly (P Ͻ 0.05) influenced by maternal lineage of oocyte donors and by the frequency of follicle aspiration. Our study demonstrates the feasibility of generating nuclear transfer embryos with defined cytoplasmic background. These will be valuable tools to experimentally dissect the effects of nuclear and cytoplasmic components on embryonic, fetal, and postnatal development.
Interspecies somatic cell nuclear transfer and preliminary data for horse-cow/mouse iSCNT
Stem Cell Reviews, 2006
Nuclear transfer (NT) experiments in mammals have dem~mstrated that adult cells are genetically equivalent to early embryonic cells and the reversal of the differentiated state of a cell to another that has characteristics of the undifferentiated ernbryomc state can be defined as nuclear reprogramming. The feasibility of interspecies somatic cell NT (iSCNT) has been demonstrated by blastocyst formation and the production of offspring in a number of studies. Embryo and oocyte availability is a major limiting factor in conducting NT to ob rain blastocys ts for both reproductive NT studies in genetically endangered animals and in embryonic stem cell derivation for species such as the horse and human. One approach to generate new embryonic stem cells in human as disease models, or in species where embryos and oocytes are not widely available, is to use oocytes from another species. Utilization of oocytes for recipient cytoplasts from other species that are accessible and abundant, such as the cow and rabbit, would greatly benefit ongoing research on reprogramming and stem cell sciences. The use of iSCNT is an exciting possibility for species with limited availability of oocy tes as well as for endangered or exotic species where assisted reproduction is needed. However, the mechanisms lnw~lved in nuclear reprogramrnlng by the oocyte are still unknown and the extent of the"u nlversahty" of ooplasmic reprogramming of development remains under investigation.