Transplacental immune modulation with a bacterial-derived agent protects against allergic airway inflammation (original) (raw)
Related papers
The mother-offspring dyad: microbial transmission, immune interactions and allergy development
Journal of Internal Medicine, 2017
The increasing prevalence of allergy in affluent countries may be caused by reduced intensity and diversity of microbial stimulation, resulting in abnormal postnatal immune maturation. Most studies investigating the underlying immunomodulatory mechanisms have focused on postnatal microbial exposure, for example demonstrating that the gut microbiota differs in composition and diversity during the first months of life in children who later do or do not develop allergic disease. However, it is also becoming increasingly evident that the maternal microbial environment during pregnancy is important in childhood immune programming, and the first microbial encounters may occur already in utero. During pregnancy, there is a close immunological interaction between the mother and her offspring, which provides important opportunities for the maternal microbial environment to influence the immune development of the child. In support of this theory, combined pre-and postnatal supplementation seems to be crucial for the preventive effect of probiotics on infant eczema. Here, the influence of microbial and immune interactions within the mother-offspring dyad on childhood allergy development will be discussed. In addition, how perinatal transmission of microbes and immunomodulatory factors from mother to offspring may shape appropriate immune maturation during infancy and beyond, potentially via epigenetic mechanisms, will be examined. Deeper understanding of these interactions between the maternal and offspring microbiome and immunity is needed to identify efficacious preventive measures to combat the allergy epidemic.
ABSTRACTStudies in European and US farming populations have documented major reductions in asthma prevalence in offspring of mothers exposed to microbial breakdown products present in farm dusts and unprocessed foods. This was associated with enhancement of innate immune competence in the offspring. We sought to (i) identify a safe therapeutic that would reproduce these immunomodulatory effects in a murine model, (ii) elucidate underlying mechanism(s)-of-action, and (iii) develop a scientific rationale for progressing this approach to human trials. We demonstrate in mice that maternal treatment during pregnancy with the microbial-derived immunomodulator OM85, which has been used clinically in adults and children in Europe for >30 years for bolstering resistance to infection-associated airways inflammation, markedly reduces the susceptibility of the offspring of treated mothers to development of experimental atopic asthma. We identify bone marrow precursors of the dendritic cell p...
Frontiers in immunology, 2017
This review focuses on the current evidence that maternal dietary and gut bacterial exposures during pregnancy influence the developing fetal immune system and subsequent offspring asthma. Part 1 addresses exposure to a farm environment, antibiotics, and prebiotic and probiotic supplementation that together indicate the importance of bacterial experience in immune programming and offspring asthma. Part 2 outlines proposed mechanisms to explain these associations including bacterial exposure of the fetoplacental unit; immunoglobulin-related transplacental transport of gut bacterial components; cytokine signaling producing fetomaternal immune alignment; and immune programming via metabolites produced by gut bacteria. Part 3 focuses on the interplay between diet, gut bacteria, and bacterial metabolites. Maternal diet influences fecal bacterial composition, with dietary microbiota-accessible carbohydrates (MACs) selecting short-chain fatty acid (SCFA)-producing bacteria. Current evidenc...
The maternal microbiome during pregnancy and allergic disease in the offspring
Seminars in immunopathology, 2017
There is substantial epidemiological and mechanistic evidence that the increase in allergic disease and asthma in many parts of the world in part relates to changes in microbial exposures and diet acting via the composition and metabolic products of the intestinal microbiome. The majority of research in this field has focused on the gut microbiome during infancy, but it is increasingly clear that the maternal microbiome during pregnancy also has a key role in preventing an allergy-prone immune phenotype in the offspring. The mechanisms by which the maternal microbiome influences the developing fetal immune system include alignment between the maternal and infant regulatory immune status and transplacental passage of microbial metabolites and IgG. Interplay between microbial stimulatory factors such as lipopolysaccharides and regulatory factors such as short-chain fatty acids may also influence on fetal immune development. However, our understanding of these pathways is at an early s...
Early Life Microbial Exposure and Immunity Training Effects on Asthma Development and Progression
Frontiers in Medicine, 2021
Asthma is the most common inflammatory disease affecting the lungs, which can be caused by intrauterine or postnatal insults depending on the exposure to environmental factors. During early life, the exposure to different risk factors can influence the microbiome leading to undesired changes to the immune system. The modulations of the immunity, caused by dysbiosis during development, can increase the susceptibility to allergic diseases. On the other hand, immune training approaches during pregnancy can prevent allergic inflammatory diseases of the airways. In this review, we focus on evidence of risk factors in early life that can alter the development of lung immunity associated with dysbiosis, that leads to asthma and affect childhood and adult life. Furthermore, we discuss new ideas for potential prevention strategies that can be applied during pregnancy and postnatal period.
Gut microbiota and allergy: the importance of the pregnancy period
Pediatric research, 2015
Limited microbial exposure is suggested to underlie the increase of allergic diseases in affluent countries, and bacterial diversity seems to be more important than specific bacteria taxa. Prospective studies indicate that the gut microbiota composition during the first months of life influences allergy development, and support the theory that factors influencing the early maturation of the immune system might be important for subsequent allergic disease. However, recent research indicates that microbial exposure during pregnancy may be even more important for the preventative effects against allergic disease. This review gives a background of the epidemiology, immunology, and microbiology literature in this field. It focuses on possible underlying mechanisms such as immune-regulated epigenetic imprinting and bacterial translocation during pregnancy, potentially providing the offspring with a pioneer microbiome. We suggest that a possible reason for the initial exposure of bacterial...