Multiscale modeling of the plasticity in an aluminum single crystal (original) (raw)
Abstract
AI
This paper describes a numerical, hierarchical multiscale modeling methodology involving two distinct bridges over three different length scales that predicts the work hardening of face centered cubic crystals in the absence of physical experiments. This methodology builds a clear bridging approach connecting nano-, micro-and meso-scales. In this methodology, molecular dynamics simulations (nanoscale) are performed to generate mobilities for dislocations. A discrete dislocations numerical tool (microscale) then uses the mobility data obtained from the molecular dynamics simulations to determine the work hardening. The second bridge occurs as the material parameters in a slip system hardening law employed in crystal plasticity models (mesoscale) are determined by the dislocation dynamics simulation results. The material parameters are computed using a correlation procedure based on both the functional form of the hardening law and the internal elastic stress/plastic shear strain fields computed from discrete dislocations. This multiscale bridging methodology was validated by using a crystal plasticity model to predict the mechanical response of an aluminum single crystal deformed under uniaxial compressive loading along the [4 2 1] direction. The computed strain-stress response agrees well with the experimental data.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (78)
- Alder, J.F., Phillips, V.A., 1954. Effect of strain rate and temperature on the resistance of aluminum, copper, and steel to compression. J. Inst. Met. 83, 80.
- Amadeo, R., Ghoniem, N., 1990. Dislocation dynamics. I. A proposed methodology for deformation micromechanics. Phys. Rev. B 41, 6958-6967.
- Aoyagi, Y., Shizawa, K., 2007. Multiscale crystal plasticity modeling based on geometrically necessary crystal defects and simulation on fine-graining for polycrystal. Int. J. Plasticity 23, 1022-1040.
- Armstrong, P.J., Frederick, C.O., 1966. A mathematical representation of the multiaxial Bauschinger effect. CEGB Report RD/B/ N731, Berkeley Nuclear Lab.
- Bacon, D., 1967. A method for describing a flexible dislocation. Phys. Stat. Sol. 23, 527-538.
- Bammann, D.J., 1984. An internal variable model of viscoplasticity. In: Aifantis, E.C., Davison, L. (Eds.), Media with Microstructures and Wage Propagation, International Journal of Engineering Science. Pergamon Press, Oxford. vols. 8-10, p. 1041.
- Bammann, D.J., Aifantis, E., 1981. On the perfect lattice-dislocated state interaction. In: Selvadurai, A.P.S. (Ed.), Mechanics of Structured Media, Proceedings of the of International Symposium on Mechanical Behavior of Structured Media. Elsevier, Amsterdam.
- Baskes, M., 1992. Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727-2742.
- Berveiller, M., Zaoui, A., 1979. An extension of the self-consistent scheme to plastically flowing polycrystals. J. Mech. Phys. Solids 26, 325-344.
- Brown, L., 1964. The self-stress of dislocations and the shape of extended nodes. Philos. Mag. 10, 441-466.
- Bulatov, V., Rhee, M., Cai, W., 2201. Periodic boundary conditions for dislocation dynamics simulations in three dimensions. In: Kubin, L.P., Bassani, J.L., Cho, K., Gao, H., Selinger, R.L.B. (M.M. of Materials Eds.), vol. 653, Mat. Res. Soc. Symp. Proc., 2001, pp. Z1.3.1-Z.1.3.6.
- Burgers, J.M., 1939. Report of a conference of strength of solids. Proc. Kon. Ned. Acad. Wet. 47, 283-378.
- Canova, G., Kubin, L., 1991. Dislocation microstructure and plastic flow: a three dimensional simulation. In: Maugin, G.A. (C. Model and D. Systems, Eds.), vol. 2, Longman Scientific and Technical, pp. 93-101.
- Chang, J., Bulatov, V., Yip, S., 1999. Molecular dynamics study of edge dislocations motion in a bcc metal. J. Comput.-Aid Mater. Des. 6, 165-173.
- Daw, M., Foiles, M., Baskes, S., 1993. The embedded-atom method: a review of theory and applications. Mater. Sci. Rep. 9, 251- 310.
- Devincre, B., 1995. Three-dimensional stress fields expressions for straight dislocation segments. Solid State Commun. 93, 875- 878.
- Devincre, B., Kubin, L., Lemarchand, C., Madec, R., 2001. Mesoscopic simulations of plastic deformation. Mater. Sci. Eng. A 309- 310, 211-219.
- Devincre, B., Kubin, L., Hoc, T., 2006. Physical analyses of crystal plasticity by DD simulations. Scripta Mater. 54, 741-746.
- El-Awady, J.A., Biner, S.B., Ghoniem, N.M., 2008. A self-consistent boundary element, parametric dislocation dynamics formulation of plastic flow in finite volumes. J. Mech. Phys. Sol. 56, 2019-2035.
- Estrin, Y., 1996. Dislocation-density-related constitutive modeling. In: Krausz, A.S., Krausz, K. (Eds.), Unified Constitutive Laws of Plastic Deformation. Academic Press, San Diego, pp. 69-110.
- Estrin, Y., 1998. Dislocation theory based constitutive modelling: foundations and J. Mater. Proc. Technol. 80-81, 33-39.
- Estrin, Y., Mecking, H., 1984. A unified phenomenological description of work hardening and creep based on one-parameter models. Acta Metall. 32, 57-70.
- Fivel, M., 1997. Etudes numériques à différentes échelles de la déformation plastique des monocristaux de structure CFC, Ph.D. Thesis, INPG/Université Joseph Fourier de Grenoble.
- Fivel, M., Tabourot, L., Rauch, E., Canova, G., 1998. Identification through mesoscopic simulations of macroscopic parameters of physically based constitutive equations for the plastic behaviour of fcc single crystals. J. Phys. IV (Proc.) 8, 151-158.
- Foreman, A., 1967. The bowing of a dislocation segment. Philos. Mag. 15, 1011-1021.
- Franciosi, P., 1985. The concepts of latent hardening and strain hardening in metallic single crystals. Acta Metall. 33, 1601-1612.
- Ghoniem, N., Sun, L., 1999. Fast-sum method for the elastic field of three-dimensional dislocation ensembles. Phys. Rev. B 60, 128-140.
- Gullett, P.M., Wagner, G., Slepoy, A., Horstemeyer, M.F., Potirniche, G., Baskes, M.I., 2003. Numerical tools for atomistic simulation, Sandia National Laboratories Report, CA, SAND2003-8782.
- Guyot, P., Dorn, J.E., 1967. A critical review on the Peierls mechanism. Can. J. Phys. 45, 983-1016.
- Hiratani, M., Zbib, H.M., Khaleel, M.A., 2003. Modeling of thermally activated dislocation glide and plastic flow through local obstacles. Int. J. Plasticity 19, 1271-1296.
- Hirth, J., Lothe, J., 1982. Theory of Dislocations, second ed. Wiley, New York.
- Hirth, J.P., Zbib, H.M., Lothe, J., 1998. Forces on high velocity dislocations. Model. Simul. Mater. Sci. Eng. 6, 165-169.
- Hoover, W.G., 1985. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695-1697.
- Horstemeyer, M.F., Potirniche, G., Marin, E.B., 2005. In: Yip, S. (Ed.), Mesoscale-Macroscale Continuum Modeling: Crystal Plasticity, Handbook for Materials Modeling. Springer, AA Dordrecht, The Netherlands. p. 3300 (Chapter 3).
- Hughes, D., Bammann, D., Codfrey, A., Prantil, V., Holm, E., Miodownik, M., Chrzan, D. Lusk, M., 2000. Capturing recrystallization of metals with a multi-scale materials model, Sandia National Laboratories Report, CA, SAND2000-8232.
- Jelinek, B., Houze, J., Kim, S., Horstemeyer, M.F., Baskes, M.I., Kim, S.-G., 2007. Modified embedded-atom method interatomic potentials for the Mg-Al alloy system. Phys. Rev. B 75, 054106.
- Kocks, U.F., 1970. The relation between polycrystal deformation and single-crystal deformation. Metall. Mater. Trans. B 1, 1121- 1143.
- Kocks, U.F., Mecking, H., 1979. A Mechanism for Static and Dynamic Recovery. In Strength of Metals and Alloys. Pergamon Press, Oxford.
- Kocks, U.F., Mecking, H., 2003. Physics and phenomenology of strain hardening: the fcc case. Prog. Mater. Sci. 48, 171-273.
- Kocks, U.F., Argon, A.S., Ashby, M.F., 1975. Thermodynamics and Kinetics of Slip. Pergamon Press, Oxford.
- Kubin, L., Canova, G., Condat, M., Devincre, B., Pontikis, V., Brechet, Y., 1992. Dislocation structures and plastic flow: a 3D simulation. Solid State Phenom. 23-24, 455-472.
- Langlois, L., Berveiller, M., 2003. Overall softening and anisotropy related with the formation and evolution of dislocation cell structures. Int. J. Plasticity 19, 599-624.
- Le, K.C., Stumpf, H., 1996. A model of elastoplastic bodies with continuously distributed dislocations. Int. J. Plasticity 12, 611- 627.
- Li, S., 2008. Orientation stability in equal channel angular extrusion. Part I. Face-centered cubic and body-centered cubic materials. Acta Mat. 56, 1018-1030.
- Madec, R., 2001. Dislocation interactions to plastic flow in fcc single crystals: A study by simulation of dislocation dynamics, Ph.D. Thesis, Orsay University.
- Madec, R., Devincre, B., Kubin, L., 2001. New line model for optimized dislocation dynamics simulations. In: Kubin, L.P., Bassani, J.L., Cho, K., Selinger, R.L.B. (M. Materials Modeling, Eds.), Mat. Res. Soc. Symp. Proc. vol. 653, 2001, pp. Z1.8.1-Z1.8.6.
- Madec, R., Devincre, B., Kubin, L., 2003. On the use of periodic boundary conditions in dislocation dynamics simulations. In: Kitagawa, Y., Shibutani, H. (Eds.), Mesoscopic Dynamics in Fracture Process and Strength of Materials: IUTAM Symposium. Kluwer Academic Publisher, Dordrecht.
- Madec, R., Devincre, B., Kubin, L., Hoc, T., Rodney, D., 2003a. The role of collinear interaction in dislocation-induced hardening. Science 301, 1879-1882.
- Marin, E.B., 2006. On the formulation of a crystal plasticity model, Sandia National Laboratories, CA, SAND2006-4170.
- Marin, E.B., Dawson, P.R., 1998. On modeling the elasto-viscoplastic response of metals using polycrystal plasticity. Comput. Methods Appl. Mech. Engrg. 165, 1-21.
- Mecking, H., Estrin, Y., 1987. Microstructure related constitutive modelling of plastic deformation. In: 8th International Symposium on Metallurgy and Material Science, Riso, Denmark.
- Mecking, H., Kocks, U., 1981. Kinetics of flow and strain hardening. Acta Metall. 29, 1865-1875.
- Mordehai, D., Ashkenazy, Y., Kelson, I., 2003. Dynamic properties of screw dislocations in Cu: a molecular dynamics study. Phys. Rev. B 67, 024112-1-024112-8.
- Nadgorny, E., 1998. Dislocation dynamics and mechanical properties. Progress in Materials Science 31. Pergamon Press, Oxford. Nose, S., 1984. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 50, 255-268.
- Ohashi, T., 1994. Numerical modeling of plastic multislip in metal crystals of fcc type. Philos. Mag. A 70 (5), 793-803.
- Ohashi, T., Kawamukai, M., Zbib, H., 2007. A multiscale approach for modeling scale-dependent yield stress in polycrystalline metals. Int. J. Plasticity 23, 897-914.
- Olmsted, S., Hector, J.L., Curtin, W., Clifton, R., 2005. Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys. Model. Simul. Mater. Sci. Eng. 13, 371-388.
- Palm, J., 1948. Stress-strain relation for uniaxial loading. Appl. Sci. Rets. Sect. A 1, 198-210.
- Parameswaran, V., Urabe, N., Weertman, V., 1972. Dislocation mobility in aluminium. J. Appl. Phys. 43, 2982-2986.
- Preußner, J., Rudnik, Y., Brehm, H., Völkl, R., Glatzel, U., 2008. A dislocation density based material model to simulate the anisotropic creep behavior of single-phase and two-phase single crystals. Int. J. Plasticity. doi:10.1016/j.ijplas.2008.04.006.
- Queyreau, S., Monnet, G., Devincre, B., 2008. Slip systems interactions in a-iron determined by dislocation dynamics simulations. Int. J. Plasticity. doi:10.1016/j.ijplas.2007.12.009.
- Saada, G., 1960. Sur le durcissement dû à la recombinaison des dislocations. Acta Metall. 8, 841-847.
- Sauzay, M., 2008. Analytical modeling of intergranular backstresses due to deformation induced dislocation microstructures. Int. J. Plasticity 24, 727-745.
- Shenoy, M., Tjiptowidjojo, Y., McDowell, D., 2008. Microstructure-sensitive modeling of polycrystalline IN 100. Int. J. Plasticity 24, 1694-1730.
- Shizawa, K., Zbib, H.M., 1999. A thermodynamical theory of gradient elastoplasticity with dislocation density tensor. Int. J. Plasticity 15, 899-938.
- Shizawa, K., Zbib, H.M., 2001. A strain-gradient thermodynamical theory of plasticity based on dislocation density and incompatibility tensors. Mater. Sci. Eng. A 309-310, 416-419.
- Tabourot, L., Fivel, M., Rauch, E., 1997. Generalised constitutive laws for fcc single crystal. Mater. Sci. Eng. A 234-236, 639-642.
- Tang, M., Cai, W., Xu, G., Bulatov, V.V., 2006. A hybrid method for computing forces on curved dislocations intersecting free surfaces in three-dimensional dislocation dynamics. Model. Simul. Mater. Sci. Eng. 14, 1139-1151.
- Teodosiu, C., Sidoroff, F., 1976. A finite theory of the elasto-viscoplasticity of single crystals. Int. J. Eng. Sci. 14, 713-723.
- Teodosiu, C., Raphanel, J., Tabourot, L., 1993. Finite implementation of the large elastoplastic deformation of multicrystals. In: Teodosiu, C., Raphanel, J., Sidoroff, F. (Eds.), Large Plastic Deformation, pp. 153-168.
- Van der Giessen, E., Needleman, A., 1995. Discrete dislocation plasticity: a simple planar model. Model. Simul. Mater. Sci. Eng. 3, 689-735.
- Voce, E., 1948. The relation between stress and strain for homogeneous deformation. J. Inst. Met. 74, 537-562.
- Volterra, V., 1907. Sur l'equilibre des corps elastiques multiplement connexes. Ann. Ecole Nom. Sup. 24, 400.
- Wang, Z.Q., Beyerlein, I.J., LeSar, R., 2007. The importance of cross-slip in high rate deformation. Model. Simul. Mater. Sci. Eng. 15, 675-690.
- Wang, Z.Q., Beyerlein, I.J., LeSar, R., 2009. Plastic anisotropy in fcc single crystal in high rate deformation. Int. J. Plasticity 25, 26- 48.
- Weygand, D., Friedman, L.H., Van der Giessen, E., Needleman, A., 2002. Aspects of boundary-value problem solutions with three- dimensional dislocation dynamics. Model. Simul. Mater. Sci. Eng. 10, 437-468.
- Zbib, H.M., Diaz de la Rubia, T., 2002. A multiscale model of plasticity. Int. J. Plasticity 18, 1133-1163.
- Zbib, H., Rhee, M., Hirth, J., 1998. On plastic deformation and the dynamics of 3D dislocation. J. Mech. Sci. 40, 113-127.